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ABSTRACT

USING VISUAL ANALYTICS TO EXPLAIN

BLACK-BOX MACHINE LEARNING

by

Josua Walter Hugo Krause

Advisor: Prof. Enrico Bertini, Ph.D.

Submitted in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy (Computer Science)

May 2018

As machine learning models increase in complexity, the human ability to understand

and interpret decisions made by those models has not been able to keep up. The

usefulness of white-box analysis techniques, exposing the internal state of models,

is limited to relatively simple models and has trouble with complex models, such as

deep neural networks. Recently, black-box machine learning analysis techniques offer

model independent insights into the decision making process of machine learning

models. In order to quickly and effectively gain insights from those techniques,



ix

visual analytics emerges as a powerful set of tools. We use visual analytics to

explore both global and local means of explaining and understanding predictive

models via black-box techniques. We then propose the Model Diagnostic workflow

that uses aggregated instance-level explanations to overcome problems of fully

global or local methods. That is, by avoiding global aggregates, finer details of

the decision making process are retained, while going beyond individual instances,

analysts are not overwhelmed by the quantity of instances to inspect. Finally, we

show that the Model Diagnostic workflow can not only help improving the models

themselves but offers insights about flaws in the input data, thus helping with the

task of feature engineering.



x

Contents

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

1 Introduction 1

1.1 Machine Learning and Predictive Modeling . . . . . . . . . . . . . . 2

1.1.1 Popular Algorithms . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Failure Modes . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Visual Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Use Case: Machine Learning for Health Care . . . . . . . . . . . . . 16

1.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 Research Overview and Thesis Contributions . . . . . . . . . . . . . 23

1.5.1 INFUSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5.2 Prospector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5.3 Model Diagnostic Workflow . . . . . . . . . . . . . . . . . . 26

1.5.4 User Study on Aggregating Explanations . . . . . . . . . . . 28

1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



xi

2 INFUSE 30

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.1 Predictive Modeling in Health Care . . . . . . . . . . . . . . 34

2.1.2 Running Example: Diabetes Prediction . . . . . . . . . . . . 36

2.1.3 Task Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.1 Visual Feature Selection . . . . . . . . . . . . . . . . . . . . 40

2.2.2 Visualization in Predictive Modeling . . . . . . . . . . . . . 42

2.3 INFUSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.1 Data and Design . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.2 Feature View . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.3 List View . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3.4 Classifier View . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3.5 Interactive Model Builder . . . . . . . . . . . . . . . . . . . 54

2.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.4.1 Insight 1: Data Issues . . . . . . . . . . . . . . . . . . . . . 56

2.4.2 Insight 2: Clinically Relevant Features . . . . . . . . . . . . 58

2.5 Future Work and Conclusion . . . . . . . . . . . . . . . . . . . . . . 59

2.6 General Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3 Prospector 63

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.1.1 Machine Learning for Predictive Modeling . . . . . . . . . . 66

3.1.2 Predictive Modeling in Health Care . . . . . . . . . . . . . . 67

3.1.3 Partial Dependence . . . . . . . . . . . . . . . . . . . . . . . 70

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



xii

3.2.1 Motivation for Interpretability . . . . . . . . . . . . . . . . . 72

3.2.2 Algorithm Specific Model Visualization . . . . . . . . . . . . 72

3.2.3 Model Result Visualization . . . . . . . . . . . . . . . . . . . 73

3.2.4 Probing Models . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3.1 Partial Dependence Plots . . . . . . . . . . . . . . . . . . . . 76

3.3.2 Local Inspection . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3.3 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.4 Case Study: Predicting Diabetes . . . . . . . . . . . . . . . . . . . 87

3.4.1 Understanding Model Classes . . . . . . . . . . . . . . . . . 91

3.4.2 Unexpected Effects of Data Imputation . . . . . . . . . . . . 92

3.4.3 The Need for Localized Inspection . . . . . . . . . . . . . . . 92

3.4.4 Impact on Data Scientists’ Workflow . . . . . . . . . . . . . 94

3.5 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . 95

3.6 General Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4 Explainer 98

4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.1.1 Model Explanations: Why and How . . . . . . . . . . . . . 103

4.1.2 Human-in-the-Loop Inspection of Classifiers . . . . . . . . . 104

4.2 Model Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2.1 User Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2.2 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3 Explanation Method . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.4 Visual Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.4.1 Statistical Summary View . . . . . . . . . . . . . . . . . . . 115



xiii

4.4.2 Explanation Explorer . . . . . . . . . . . . . . . . . . . . . . 117

4.4.3 Item Level Inspector . . . . . . . . . . . . . . . . . . . . . . 121

4.5 Case Study: Analysis of Medical Outcomes . . . . . . . . . . . . . . 123

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.7 Conclusion & Future Work . . . . . . . . . . . . . . . . . . . . . . . 138

4.8 General Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5 User Study on Aggregating Instance-level Explanations 140

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.2.1 Effectiveness of Instance-level Explanations . . . . . . . . . . 145

5.2.2 Detecting Biases Using Visual Analytics Methods . . . . . . 146

5.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.4 Design Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.5.1 User Interface Conditions . . . . . . . . . . . . . . . . . . . 151

5.5.2 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.5.3 Tasks and Measurements . . . . . . . . . . . . . . . . . . . . 156

5.5.4 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.6.1 Bias Detection and Trust . . . . . . . . . . . . . . . . . . . . 159

5.6.2 Comparison Across Conditions . . . . . . . . . . . . . . . . . 161

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.8 Conclusion & Future Work . . . . . . . . . . . . . . . . . . . . . . . 164

5.9 General Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 165



xiv

6 Thesis Summary 167

6.1 Limitations and Assumptions of Black-Box Analysis . . . . . . . . . 168

6.2 Generalization to Other Forms of Machine Learning . . . . . . . . . 170

6.3 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7 Conclusion & Future Work 172



xv

List of Figures

1.1 Example of a confusion matrix. . . . . . . . . . . . . . . . . . . . . 3

1.2 Example of a ROC curve. . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Influence function for “age” of a Generalized Additive Model. . . . 8

1.4 Example Decision Tree. . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Anscombe’s quartet. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6 Influence functions of Pneumonia model. . . . . . . . . . . . . . . . 19

1.7 Programmable circuit to automatically design oscillators. . . . . . . 20

1.8 The adversarial patch. . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.9 The model diagnostic workflow. . . . . . . . . . . . . . . . . . . . . 26

2.1 Overview of INFUSE . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Steps of a typical predictive modeling pipeline. . . . . . . . . . . . . 34

2.3 Breakdown of the user interface of INFUSE . . . . . . . . . . . . . . 35

2.4 How to read the glyph representation of INFUSE . . . . . . . . . . . 44

2.5 Different glyph designs. . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.6 Different axis combinations for the scatter-plot layout. . . . . . . . 47

2.7 The Classifier View. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.8 A cell of the Classifier View. . . . . . . . . . . . . . . . . . . . . . . 53



xvi

2.9 INFUSE ’s Interactive Model Builder. . . . . . . . . . . . . . . . . . 55

2.10 The scatter-plot view allows to compare multiple types of rankings. 56

2.11 The clinical researchers found an interesting pattern among the glyphs. 60

3.1 An illustration of how partial dependence is computed. . . . . . . . 68

3.2 Partial dependence plots. . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3 Different sampling strategies for partial dependence plots. . . . . . . 75

3.4 Explanation of how local inspection works. . . . . . . . . . . . . . . 79

3.5 The same feature shown as line plot and partial dependence bar. . . 80

3.6 Comparison of three machine learning models. . . . . . . . . . . . . 84

3.7 The interface for selecting a patient. . . . . . . . . . . . . . . . . . . 88

3.8 The summary of one patient. . . . . . . . . . . . . . . . . . . . . . . 89

3.9 The user interface of Prospector . . . . . . . . . . . . . . . . . . . . . 90

4.1 The Model Diagnostics workflow. . . . . . . . . . . . . . . . . . . . 102

4.2 The Statistical Summary View. . . . . . . . . . . . . . . . . . . . . 115

4.3 The Explanation Explorer. . . . . . . . . . . . . . . . . . . . . . . . 116

4.4 The Item Level Inspector. . . . . . . . . . . . . . . . . . . . . . . . 124

4.5 Showing different orders in the Explanation Explorer. . . . . . . . . 126

4.6 Showing the second dataset of the case study. . . . . . . . . . . . . 133

5.1 Showing the four study conditions. . . . . . . . . . . . . . . . . . . 143

5.2 The full interface illustrating the aggregated histogram view. . . . . 144

5.3 Comparing the distribution of values by “Actual Label”. . . . . . . 148

5.4 The full interface illustrating the table view. . . . . . . . . . . . . . 152

5.5 Comparison of different subset selections on both models. . . . . . . 154

5.6 Trust and whether the model makes sense. . . . . . . . . . . . . . . 159



xvii

5.7 Change in trust and whether the model makes sense. . . . . . . . . 160

5.8 Comparison of participants’ trust and ability to detect the bias. . . 161

5.9 Interactions with the table and histogram views. . . . . . . . . . . . 162

5.10 Overall completion time of the study by condition. . . . . . . . . . 163



xviii

List of Tables

1.1 Comparison of black-box and white-box explanation strategies. . . . 22

1.2 Locality of decision analyses of the presented approaches. . . . . . . 27



1

Chapter 1

Introduction

In computer science, machine learning is a set of methods for learning models

from examples that accurately perform tasks on new or unseen data without

explicitly codifying all instructions. This automation of programming provides a

time- and cost-effective alternative to otherwise manually created software solutions,

making machine learning popular and widely used for many applications.

However, the relative lack of human supervision in their creation makes it hard

to fully understand the inner workings of trained models and limits the ability to

verify that the models work correctly. Even though it is possible to statistically

verify the correctness of a model by testing it against an unseen data set whose

ground truth is known, models can unknowingly utilize latent variables that should

not be used. Knowledge about those factors is often implicit in the domain of the

task and neither encoded in the data nor the model. Human expertise is needed to

detect and encode them explicitly or to block them out.

With the growing complexity of machine learning models and the need for

algorithm-agnostic approaches, black-box explanations offer insights into the ex-
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ternal behavior of such models. Visual analytics can be used to leverage the full

potential of those explanations in a scalable way.

This thesis explores both global and local approaches for black-box explanations.

Furthermore, it shows the advantage of the compromise of both techniques: aggre-

gating instance-level explanations. This results in the Model Diagnostic workflow

which not only helps improving machine learning models, but also offers insights

about problems with the input data, assisting in the task of feature engineering.

Following, we will discuss essentials in both machine learning, starting in

Section 1.1, and visual analytics, in Section 1.2. Then, in Section 1.3, we will

briefly discuss the common use case, of machine learning for health care, within this

thesis. Afterwards, we will motivate the work of the thesis in Section 1.4 followed

by an overview of the research and contributions of the thesis in Section 1.5. In

Section 1.6 we will then outline the remainder of this thesis.

1.1 Machine Learning and Predictive Modeling

Machine learning enables computers to perform tasks without manually codifying

all instructions. This automated programming makes machine learning a popular

and widely used approach for many applications as it provides a time- and cost-

effective alternative to manually created software solutions. Machine learning

relies on algorithms that learn and generalize from examples in order to perform

accurately on new or unseen data.

Predictive modeling is a subcategory of machine learning that aims to predict

certain properties from given input data. The input data typically consists of

instances with a given set of features. The values of those features can be binary,
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Figure 1.1: Example of a confusion matrix. Each cell represents the number of
instances under a certain condition. Rows show the ground truth while columns
show the predicted outcomes from the machine learning model. For example, there
were 44 instances predicted “high” whose ground truth is actually “low”. The edge
of the matrix shows the tallies of the rows and columns.

categorical, or numerical. We can think of the data as a table where features are

columns and rows are instances. Thus, this kind of data is typically referred to as

tabular or structured data. In the case of unstructured data, such as plain text, the

data needs to be converted into structured data first, before it can be used as input

of predictive models1. The predicted property, outcome or label, can be numerical,

in which case the task is called regression, or categorical, in which case the task is

called classification2. The different values the label can assume are called classes.

The task is call binary classification if the categorical label has exactly two classes.

The predictive model learns by training with a set of example instances (training

set) and their associated labels. In order to verify that the model did indeed correctly

learn from the given examples, a second, previously unseen, set of example instances

(testing or validation set) with known labels is typically used. The model is used

to predict the labels of this set which are then compared to the actual labels of

1In this case, the model input corresponds to a fixed-length transformed representation of the
original input data. These transformations can be either learned (i.e., via deep learning or similar
methods) or are manually specified.

2A combination of multiple properties are also possible to predict, in which case the task is
called multitask learning, structured learning, etc.. Currently, the most common form of predictive
modeling involves either a single classification or single regression task.
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those instances. Various statistical measures can be computed on this relationship

between the predicted and actual labels [1].

For binary classification tasks (for simplicity positive and negative are used

below to describe the outcomes) those statistical measures include:

True Positive / Negative The number of correctly predicted positive (TP ) or

negative instances (TN).

False Positive / Negative The number of incorrectly predicted positive (FP )

or negative instances (FN).

Accuracy (TP + TN)/(TP + TN + FP + FN) The proportion of correctly

predicted instances.

Precision TP/(TP + FP ) The ratio of correctly predicted positive instances to

instances which were predicted to be positive.

True Positive Rate / Recall TP/(TP + FN) The proportion of correctly pre-

dicted positive instances.

False Positive Rate FP/(FP + TN) The proportion of incorrectly predicted

positive instances.

All of those measures can be read from a confusion matrix, as shown in Figure 1.1.

Additionally, a further model quality measurement can be derived from the

confidence of a model in its prediction. Typically, classification models allow to

output probabilities for each class instead of the predicted class directly. This

allows for inspecting the confidence of the model. In the case of binary classifiers a

threshold can be used to adjust predictions to favor confidence in a certain class

higher than the other. This is achieved by outputting the positive class as prediction

if its probability is higher than the threshold and the negative class otherwise.
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Figure 1.2: Example of a ROC curve. The plot indicates the correctness of the
model with the false positive rate as horizontal axis and the true positive rate as
vertical axis. The line traces those values for different prediction thresholds. The
threshold minimizing incorrect predictions is highlighted by the colored axes.

The receiver operating characteristic (ROC) curve for binary classifiers plots

the true positive rate against the false positive rate for all thresholds between 0 and

1, as shown in Figure 1.2. The plot indicates the correctness of the model w.r.t.

its confidence. The ROC curve for a perfect model (100% accuracy) would follow

the left vertical axis and the top horizontal axis. The area under the ROC curve

(AUC ) is a commonly used measure for model quality [19].

1.1.1 Popular Algorithms

There are too many algorithms for predictive models to list all of them here.

However, following we will discuss the most commonly used algorithms.

1.1.1.1 Logistic Regression

Logistic Regression [1] is one of the most popular algorithms in machine learning.

This is due to its simplicity and its interpretability of the results. Suppose xi is the

value of the feature i of our data, a binary classification using Logistic Regression
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is equivalent to:

l(x) = b+
∑
i∈C

wixi

where C is the set of features, b and wi are the learned weights of the model, and

the outcome is determined by whether the weighted sum l(x) is larger or smaller

than zero. In order to work with probabilities, have greater precision around the

boundary, and to penalize points close to the boundary, a logistic function is used:

P (Y = 1|x) = L(x) =
1

1 + e−l(x)

which gives the likelihood of one of the classes. In order to train the model, i.e.,

finding the best values of b and wi, the expression P (Y = y|x), where y represents

the ground truth 0 or 1 of the training instances, needs to be maximized. In practice,

instead of maximizing P (Y = y|x), the negative logarithm of this expression is

minimized. When optimized over the entire training data, this expression is called

negative log likelihood and it can be optimized via techniques such as gradient

descent, to find optimal values of b and wi.

One of the main advantages of logistic regression is its interpretability. The

weights wi can be directly interpreted as how influential a particular feature is.

That is, if the magnitude of a weight is large, a small change in the value xi of

the feature has a big impact on the overall sum. Additionally, the sign of a weight

indicates whether a particular feature is positively or negatively correlated with

the outcome. For example, a simple (not necessarily correct) predictor for Type 2
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Diabetes3 could look like:

ldiabetes(x) = −1.9 + 0.01xage + 0.02xmass + (−0.3)xheight

with xage in years, xmass in kg, and xheight in m. From here, we can see that the

model assumes that a high mass leads to higher Diabetes risk, old age also leads to

a higher risk but less so than high mass, and large body height leads to a smaller

risk. This gives a very intuitive understanding of how the model is reaching its

conclusion.

However, this example also illustrates some limitations of logistic regression

models. BMI (Body Mass Index; xmass/x
2
height) is a better indicator than mass or

height alone, but cannot be expressed or learned by a logistic regression model4.

Additionally, since the influence of the features is always the same, one feature

can force a prediction if its values are large enough. For example, the model will

predict a high Diabetes risk with high age independent of the mass or height.

1.1.1.2 Generalized Additive Models

A Generalized Additive Model (GAM [47]) extends the idea of logistic regression

to functions instead of weights:

g(x) = b+
∑
i∈C

fi(xi)

3A disease, affecting the body’s ability to regulate blood sugar, which is mostly driven by
lifestyle choices and associated with obesity and hypertension. The most common age of onset is
between ∼45 and ∼65.

4Note, that we could provide BMI directly but only because domain experts had inferred
the importance of this relationship in the past. Alternatively, we could also provide features in
logarithmic space enabling logistic regression models to learn this relationship, since logarithmic
BMI is log (xmass)− 2.0 log (xheight).
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Figure 1.3: An influence function for “age” of a Generalized Additive Model [25].

where C is the set of features, b is the learned bias of the model, fi are learned

influence functions, and the outcome is determined by whether the sum g(x) is

larger or smaller than zero. Having influence functions overcomes the restricted

expressiveness of logistic regression models while maintaining its interpretability.

The impact of individual features can be seen in the plots of the influence functions.

In the Diabetes example from above, a GAM could solve the issue of always

connecting high age to high Diabetes risk by decreasing the influence of the feature

age for higher values than ∼65. However, since GAMs only consider one feature at

a time, the BMI (xmass/x
2
height) can still not be expressed or learned by the model.

1.1.1.3 Decision Trees

Instead of computing predictions with a mathematical formula, Decision Trees

[1] determine predictions by following a sequence of tests on the data. Decision

Trees are trees where each node represents a test xi > ti, with xi as the value of the

feature i and ti as learned threshold. The prediction algorithm starts at the root

of the tree. Depending on the outcome of the test in the root node the algorithm

continues with the corresponding sub-tree recursively, until a leaf node is reached.

The leaf nodes contain the probabilities for the outcomes of the prediction task and

are returned as result by the algorithm.
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Figure 1.4: A possible decision tree for the Diabetes prediction example5. Note,
that the tree has interval checks to model the relationship between “weight” in kg
and “height” in m.

Decision Trees are usually considered very interpretable, as their behaviour is

intuitively understandable. However, this only holds true for trees with a relatively

low number of nodes. Trees with hundreds or thousands of nodes are hard to

interpret as their complexity makes it hard to gain a mental model.

Decision Trees excel in cases where certain ranges of features have a clear

impact on the outcome. For example, in our running Diabetes use case, the risk of

becoming diabetic is significantly higher for ages between ∼45 and ∼65. A Decision

Tree can then differentiate by age and infer the prediction differently for values

inside or outside of that range.

However, Decision Trees cannot model relationships between features very well

and have to approximate them. For example, increasing the height of a person also

increases that person’s weight. This means that whether a person is overweight,

5The tree and its parameters are not based on any data and serve only illustratory purposes.
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not only depends on the weight of the person, but also how tall that person is. A

person weighing 80kg can be considered overweight with a height of 1.7m but would

not be with a height of 1.8m. Since a Decision Tree cannot model this relationship

(xmass/x
2
height ≥ 25) directly it has to approximate it by breaking the values of xmass

and xheight into intervals and checking them separately (see Figure 1.4). Because of

this, Decision Trees are likely to over-fit on the training data. Over-fitting happens

when a machine learning model does not generalize well because of a pattern in

the data that is only present in the training data.

1.1.1.4 Ensemble Methods

A powerful method of utilizing several weak models are Ensemble Models.

Instead of taking the prediction of one model, Ensembles combine the prediction of

many models in order to get a definite result. This is typically done either by using

the average prediction of multiple models or by majority voting, i.e., the most

common prediction among the individual models is used as final prediction [1].

The main advantage of Ensemble Models is that it can improve the performance

of otherwise worse performing models. Given a set of independent models with

uncorrelated errors the resulting error reduction of the Ensemble is proportional to

the number of individual models [43].

One popular Ensemble Model is the Random Forest [20], which combines several

Decision Trees trained on random sub-samples of the training data. This overcomes

the tendency of Decision Trees to over-fit on their training data. Another advantage

of Random Forests is that they typically produce good results on only few training

instances already.
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1.1.1.5 Neural Networks

With the recent advance of more powerful computation hardware, especially

with highly parallelizable GPUs6, and availability of larger data sets, (Deep) Neural

Networks have become a popular class of machine learning models. The basic

building block of a Neural Network is a layer, that is a mathematical construct

that has N input features and M output features. A layer can also have stored

coefficients called weights.

A very common layer is the fully-connected layer. For each output feature or

node, it computes a weighted sum of all input features, much like Linear Regression:

yj(x) = bj +
N∑
i=1

wijxi

where the yj represents the jth output feature, bj is the corresponding bias and wij

the corresponding weights.

Other common layers are ReLU (Rectified Linear Unit) and Softmax which

both require N = M . ReLU computes as yj(x) = max (0, xj) which acts as filter to

let only positive values through. Softmax computes as yj(x) = exj/
∑N

i=1 e
xi and

scales the input vector in a way that the output vector sums to one.

With those layers we can build a Multi-Layer-Perceptron (MLP [50]) classifier.

A MLP chains a number of fully-connected layers and ReLUs (or other non-linear

functions) to each other. This can be interpreted as a sequence of 1. transform

the input, 2. filter out negative values, 3. repeat. Softmax is used as final layer to

compute the actual classification. Each node here represents one of the classes of

the classifier and the class with the highest value “wins”.

6Graphics Processing Unit
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Training a MLP or any Neural Network works as follows. We initialize all

weights with random numbers. For each instance of the training data set, we first

compute the outcome with the current weights. Then we compute the gradient of

the loss function, (which can be either the negative log likelihood of training data

labels for classification or the mean of squared errors for regression tasks), with

respect to each parameter. The gradient is computed on the predicted outcome y(x)

(i.e., values of the final layer) and the desired outcome ŷ(x) (i.e., value of desired

class set to one and zero otherwise). Then, going in reverse order we numerically

compute this gradient for each layer and nudge the weights of those layers into the

direction of the gradient. This procedure is called back-propagation. Ideally, we

repeat back-propagation until all weights converge towards fixed numbers, at which

point the model is trained.

Neural networks are a powerful machine learning tool, as they enable any

function to be modeled [53] and allow for great flexibility through combining

different layers. Multi-Layer Perceptrons can potentially be used on our running

Diabetes example from above, as they do not have the limitations of any of the

previously discussed models. However, Neural Networks typically require many

thousand training examples in order to properly converge towards a performant

model, making them a sub-optimal choice for tasks where acquiring data is time-

consuming or expensive. Additionally, the large number of (hyper-)parameters also

makes them difficult to tune.

1.1.2 Failure Modes

Machine learning models do not always perform perfectly. For a given data set,

failures to do so typically fall into two main categories: under- and over-fitting [1].
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Under-fitting occurs when a model does not have enough capacity to fully learn

the input data. For example, a Logistic Regression model will never be able to

learn to classify whether a point lies inside or outside of a circle, using Cartesian

coordinates as input features. This is due to the linear nature of the model. Under-

fitting can be prevented by using a more powerful model or increasing the capacity

of the current model.

Over-fitting occurs when a model learns its training data set too precisely. For

example, a Decision Tree might create one leaf node for every instance in the

training data memorizing the outcomes of the training data in full. In this case

the model likely will not generalize to new, unseen data. Thus, in order to detect

over-fitting, it is common to keep a separate data set, called hold-out, validation, or

test data set, at hand that is not used for training the model. The trained model is

then tested against this data set. If the model performs well on the training data

but not on the test data, then the model is over-fitting. A way to prevent this is to

reduce the capacity of the model. For example, reducing the allowed maximum

depth of a Decision Tree model is a good way to reduce its capacity.

However, not all failures of machine learning models can be ascribed to the

quality of the model. Failures can also stem from the quality of the data. Common

cases include:

Biased Data: Biased data might occur if the acquired data stems from a sub-

population that insufficiently represents the entire population. For example, if we

train our Diabetes model from above only with obese people the resulting model

will most likely have a greater tendency to predict Diabetes. Note, that imputing

missing values might also result in a biased data set.

Leaking Labels: If a feature of the data is highly correlated to the outcome, a
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model might only learn this connection, preventing the model from generalizing

properly. For example, including an additional feature “Takes Insulin” to the

Diabetes model would leak the label, as only people that are already diagnosed

with Type 2 Diabetes take the drug Insulin.

1.2 Visual Analytics

Gaining meaningful insights about large data sets is hard. While computing

various statistics about the data is often helpful, it might oversimplify or in some

cases even mislead information about the data. One example data set often used to

demonstrate this is Anscombe’s quartet [11]. The quartet consists of four different

data sets that all have the same mean and sample variance for both axes, the same

correlation between the axes, and the same regression lines. However, plotting the

values of the data sets reveals that each one of those data sets obeys a different,

unique characteristic (see Figure 1.5).

Visual Analytics is the area of studying interactive graphical respresentations

for analyzing complex data such as Anscombe’s quartet mentioned above. This

is often done in addition to and with the help of computational and statistical

procedures. Various studies (including but not limited to [26, 30, 118]) have been

performed to establish visual principles to effectively take advantage of the high

processing power of the human visual system. Additionally, interaction with the

graphical representations allows to hide some of the information and reveal it

through interaction to not overwhelm the analyst. For example, “overview first;

details on demand” [105] is a popular mantra taking advantage of interaction.

In the context of machine learning, visual analytics, at first, seems to be a
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Figure 1.5: Plots of the four data sets of Anscombe’s quartet7. All data sets have
the same mean and sample variance for both axes, the same correlation between
the axes, and the same regression lines.

roadblock. Integrating a human in a machine learning workflow inevitable leads to

said human being the bottleneck. Humans are magnitudes slower than computers

which have to idle while waiting for human input. Thus, human input should only

be required for tasks that are impossible without.

For example, with the goal of improving the accuracy of a model a human

should not have the task of, e.g., manually picking the order of the features to

be included in a decision tree. A good intuition might outperform the computer

momentarily but having an objective goal makes it possible to eventually find a

suitable algorithm that is en par or even outperforms the human. Additionally,

manual decisions are not generalizable to other tasks and not scalable to larger

7Image source: Wikipedia
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data sets which in turn is the reason to use machine learning to begin with.

However, humans have soft-knowledge. That is, they have a general under-

standing of the world that is typically not codified for machines in all details.

Machines can only work with the data they have. Their data is their universe and

to them nothing else exists. Thus, only humans have the potential to detect and

correct when machine learning models acquire incorrect assumptions about their

environment. Visual Analytics can help debugging models, as well as, its data.

Additionally, Visual Analytics can help humans, especially domain experts

with a problem that is to be solved using machine learning, to verify the semantic

accuracy of a model. That is, whether decisions made by the model “make sense”.

Often, the root cause of semantically inaccurate models is due to biased data. Thus,

statistical accuracy (i.e., the proportion of correctly predicted instances) of a model

can be higher than of a different model, while simultaneously being semantically

less accurate (see [25, 65]).

Finally, as humans use machine learning models to speed up and improve

decision making, human users need to be able to trust the decisions made by

the model. Visual Analytics can help with understanding the decision’s made by

machine learning models and therefore improve the trust in the correctness of those

decisions.

1.3 Use Case: Machine Learning for Health Care

In this thesis we will mostly explore use cases from the medical domain8. It is

quite interesting to see parallels between the decision making process of doctors

8However, results are easily transferable to other domains as well.
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and machine learning.

Over thousands of years the health care domain has evolved into what we now

know as evidence-based medicine. That is, new drugs can only be approved after

long studies that show significant improvements and methods have been developed

and refined over time to improve their measurable effectiveness.

For example, when a patient is examined by a doctor, the doctor follows a

structured approach similar to a decision tree. The first few nodes in the tree set

up the context: age, ethnicity, weight, visual appearance, etc.. A young patient

has a vastly different set of potential health risks than an old patient. Likewise,

a physically active patient has different health risks than an obese patient. Only

after those initial features come symptoms into play. This pattern is also reflected

in the documentation of a patient encounter, the doctor’s note. Doctor’s notes

are structured in a way that reinforces this decision tree approach by putting the

context establishing features first.

When it comes to symptoms, doctors often have to weigh different plausible

diagnoses against each other, as the same symptoms can appear from different causes.

This is called differential diagnosis. In order to determine which diagnosis has the

highest likelihood, Bayesian reasoning is applied [125]. That is, the conditional

probabilities of symptoms with respect to different diagnoses are compared to each

other. The probabilities are determined through historical records. However, the

resulting rules are often simplified to be memorizable by humans.

While residents (recent medical doctorate graduates) follow those rules reli-

giously, attending physicians (more senior medical doctors) might sometimes follow

their intuition, acquired through years of patient interactions. Thus, such a medical

decision might not be fully explainable through empirical statistics alone anymore.
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This is equivalent to, for example, a deep neural network that learned some trans-

formations through its hidden layers that led to hard to interpret interactions of

the initial input features.

1.4 Motivation

Modern machine learning algorithms have reached a degree of potential that

lets the resulting models model almost any data set. But even though there are

statistical measures to guarantee that the model is learning correctly without

over-fitting on the training data, the model with the highest accuracy is not always

the most usable model or even semantically correct. The following three examples

aim to showcase this:

(1) Caruana et al. [25] built a Generalized Additive Model with pairwise interaction

(GA2M) to predict mortality risk for hospitalized patients with pneumonia, a

potentially life-threatening lung infection. This predictive modeling task used

machine learning to predict the mortality risk based on values of several input

features, e.g., laboratory measurements, comorbidities, or patient demographics,

and was trained from and tested against many instances. It was not feasible to

individually check each prediction of the model manually. However, the machine

learning algorithm GA2M used for this study is an intelligible model, that sacrifices

parts of its predictive quality in favor of being understandable by humans. This

enabled the authors to inspect how features contributed to the predicted outcome.

One of their findings was that the model associated having asthma, a chronic

lung disease, with a lower mortality rate for pneumonia patients. However, this

combination of diseases is known to have a significantly increased mortality rate.
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Figure 1.6: Pneumonia is an infectious disease of the lungs that inflames air sacs and
likely fills them with fluid, making it hard to breathe and potentially life-threatening
(left9). The influence functions of the features “age” (middle) and “asthma” (right)
of the model created by Caruana et al. [25].

The authors double checked their data and found that this phenomenon actually

occurred in their data set and thus appeared as correct predictions in their model.

After further investigation, it became clear that this bias in the data set stemmed

from patients, with those conditions, being treated with intensive care thus lowering

their mortality risk below the average. Outside of a hospital the risk of those

patients would have been significantly higher. The model, however, only learnt

about hospitalized patients which led to it being confident in this false association.

(2) Layzell and Bird [17] used machine learning to automatically design an oscillator,

an electronic circuit that produces a periodic oscillating signal, using a physical

programmable circuit rather than a simulated circuit. After the model completed

the task, the scientists looked at the resulting electronic circuit and were surprised

to find that instead of the conventional design, using a feedback loop of an amplifier

and a filter, the model designed a makeshift radio that responded to the desired

frequency and amplified radio signals emitted by nearby computers instead. The

output signal of this electronic circuit had the correct frequency and amplitude

according to the specification but did not create a valid result due to a latent bias

in the available data.

9Image source: Google
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Figure 1.7: The physical programmable circuit used by Bird and Layzell [17] for
solving the task of automatically designing oscillators.

(3) Brown et al. [22] exploited weaknesses of popular image classification machine

learning models in order to create an adversarial patch. This adversarial patch, when

added to any image will overwrite the original classification of the model and force

it to predict the desired outcome. Concretely, the patch seen in Figure 1.8 forces

image classification models to predict any image as toaster. The existence of such

patches illustrates the fragility of modern machine learning models to unexpected

input data, which leads to surprising and counter-intuitive mispredictions.

Those three examples all exhibit limitations of machine learning models where

increasing the statistical accuracy of the model does not result in a semantically

more correct model. This is due to inherent biases of the data.

In the pneumonia example (1) patients with exceptionally high mortality risk

were removed from the data leading to the model being unable to detect the severity

of those cases. In the radio example (2) the model utilized contextual data from

the environment that is present but should not be used in the model. And in the

toaster example (3) the model expected that all input data is coming from physical,

real, objects. Those biases cannot be detected from within the model or the data

itself. Furthermore, the process of detecting those errors, or even optimizing for

semantic accuracy cannot be automated or be formulated as procedure, since there
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Figure 1.8: The adversarial patch. When put on any image, the image will get
classified as toaster [22].

is no objective or measurable optimization criteria for it. This is in contrast to

statistical accuracy where a higher number always indicates a better model. As a

result, human judgment and contextual knowledge is absolutely necessary.

The above examples illustrate the need for human understanding and supervision

in machine learning. However, those cases required intricate understanding of the

used machine learning models and are not easily generalized to other techniques.

For example, in the case of Caruana et al. [25], the incorrect correct result was

easily identified since the authors used a special, intelligible, model. However, not

all models used in machine learning are, or even attempt to be, easily interpretable

by human experts. To counteract this, visual analytics has been successfully used

to visualize machine learning processes in order to understand and gain insights

into machine learning models [3, 59, 77, 79, 85, 87, 96, 112]. With regards to

understanding the decision making of predictive machine learning models, there

are two main strategies: white-box and black-box analysis [67].

In white-box analysis the main focus lies in communicating the internal structure

of the model at hand. That is, the analysis is based on the assumption that knowing

the full internal state of a model and being able to manually retrace decisions made

by it, helps understanding the behavior of the model in general.
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White-box Black-box

⊕ Deep understanding of decisions 	 External behavior only

⊕ Always reflects the true 	 Not guaranteed to reflect model
decision making process decisions truthfully in all cases

⊕ Full internal state available 	 Limited knowledge of
model specifics

	 Model specific techniques ⊕ Reusable techniques

	 Complexity / interpretability ⊕ Complexity / interpretability
data and model dependent independent of data and model

	 Switching to interpretable model ⊕ No performance considerations
incurs performance penalty necessary

Table 1.1: Comparison of black-box and white-box explanation strategies. ⊕
indicates advantages of a technique while 	 indicates drawbacks.

In this work we will focus on black-box analysis whose focus is on communicating

external behavior of a model. That is, no information about the model itself is

utilized during the analysis but rather typically inferred from observing how the

model reacts to carefully crafted inputs. Compared to white-box analysis there are

several advantages.

As white-box analysis relies on the internal structure and thus the nature of a

particular model type, such as the GA2M mentioned above, a method developed

for one type might not be applicable to a different type. This limits the usefulness

of white-box analysis as every new algorithm demands often an entirely new form

of representation. Since black-box analysis is model independent findings are

universally applicable.

Another drawback of white-box analysis is its scalability to the complexity

of the model. Many solutions do not sufficiently scale as models become more

complex. For example, a decision tree with 5 nodes, often used as example when

explaining the technique, can easily be visualized and understood in a node-link
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representation. This representation fails to help understanding a decision tree with

hundreds or thousands of nodes. For black-box analysis the internal complexity of

a model is irrelevant.

On the other hand black-box analysis also has drawbacks. Especially the limited

knowledge of the underlying model allows only for an approximate understanding

of its behavior as testing the entire input space would be intractable.

1.5 Research Overview and Thesis Contributions

The main goal of this thesis is to explore how model agnostic feature contribution

methods can help to gain a holistic understanding of, as well as, insights about

predictive models using visual analytics. In three stages, we will show the progression

from initial observations, that led us to utilizing black-box analysis, to the eventual

use of aggregated instance-level explanations to understand, trust, and verify

predictive models. Additionally, we show that our developed visual analytics

techniques can be helpful for feature engineering.

Feature engineering is the task of deciding which features will be collected for a

particular machine learning problem and how those features are pre-processed or

transformed in order to create favorable model results. It requires both expertise

of the problem domain, as well as, experience in picking and manipulating features

in “the right way”. For the most part, feature engineering cannot be automated

and is typically seen as “black-art” as it relies on intuition and creativity of the

modeler [36].
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1.5.1 INFUSE

In the first stage, we analyze and compare different feature selection strate-

gies. Feature selection is a pre-processing step that, unlike feature engineering,

algorithmically determines the possible predictive impact of a feature. Only the

most impactful features are then used as input for the predictive modeling process.

This is often necessary as a larger number of features require significantly more

training examples to accurately represent the valid input space without losing

predictive qualities. As feature selection algorithms use similar statistical tools as

many predictive modeling techniques it seems plausible to infer the importance

of features in the context of decision making through feature selection in a model

agnostic way.

Being able to visually compare different feature selection strategies the machine

learning experts noticed that, depending on the chosen feature selection algorithm,

different, mostly distinctive, feature sets were deemed to be important while, at the

same time, having no significant impact on predictive performance. Additionally,

from the view of a domain expert those feature sets were equally reasonable in the

context of the prediction task. This demonstrates that inspecting and comparing

alternate settings lets machine learning experts develop insights that overwrite

their initial intuitions. Also, concluding that rankings from feature selection

algorithms are not informative enough to provide the importance of features in

the context of understanding model decisions, a more powerful model agnostic

approach is needed.
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1.5.2 Prospector

In the second stage, we explore the influence of features in the decision making

process of predictive models through a technique called partial dependence. Partial

dependence computes feature impact on model outcomes by systematically probing

the model with artificial inputs. That is, while keeping the rest of the input values

the same, the inspected feature assumes all possible values showing the relationship

of feature values to the prediction score. Aggregated over all observed instances, the

general behavior of the model with respect to a given feature can be inferred. By

computing a novel feature importance score from partial dependence relationships

unusual and interesting relations can be found quickly without having to inspect

all, often several thousand, features.

Analyzing partial dependency relationships on diabetes prediction models

trained on electronic medical records containing patient demographics, diagnoses,

medications, and laboratory results, using our method we gained several insights.

Firstly, we showed that logistic regression models are not expressive enough to

accurately model the complex relationships of certain features to the outcome.

Secondly, imputation of missing values, using the population average in laboratory

results, caused the model to become uncertain close to the normal value range of

laboratory tests. Lastly, we found that the model used a proxy variable indicating

the number of doctor visits as predictor of the healthiness of a patient. However,

this is not a valid predictor. Even though a patient is likely to visit a doctor more

often if she is sick, the reverse cannot be said. The above findings show how partial

dependence with the proposed feature importance score allow analysts to ef-

fectively detect model errors related to over- and under-fitting, imputation,

and leaking labels caused by incorrect cause-effect relationships. However, a
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What is the overall accuracy of the model?

What are the main decisions?

How accurate are the decisions?

What is needed to improve the data / model?

Figure 1.9: The proposed Model Diagnostic workflow extends the conventional
Model Building workflow in machine learning for enabling domain experts to reason
about the semantic validity of the decisions made by any model through multiple
linked visualizations. This ultimately helps to improve data acquisition and model
generation processes belonging to the original workflow.

major drawback of using partial dependency is its limitations on extending it to

relations of multiple features to the predicted outcome.

1.5.3 Model Diagnostic Workflow

In the third stage, we overcome those limitations by leveraging instance-level

explanations. Instance-level explanations are defined as the smallest change, to an

instance vector, necessary to change the predicted outcome label. Aggregating over

those explanations and statistically analyzing the resulting instance subsets, proves

as powerful novel approach for understanding the behavior of a model. Additionally,

we propose a Model Diagnostic workflow (see Figure 1.9) that helps identify flaws

in the input data, used to train and test the model.

We use this workflow to analyze a predictive modeling problem revolving around

patient admission to a hospital, of patients in the emergency department of said

hospital. Accurately predicting whether a patient eventually gets admitted to the

hospital helps reducing costs. The major limiting factor of this prediction task
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Approach Instances Aggregated Global

INFUSE X

Prospector X X

Model Diagnostic workflow X

Table 1.2: Locality of decision analyses of the presented approaches. Instances
refers to analyzing decisions for one instance at a time. Aggregated refers to
analyzing decisions for groups of instances and Global refers to analyzing decisions
globally without inspecting decisions for individual instances.

is the need for input features readily, and electronically, available at the earliest

point possible. To this extend we initially used features of prescribed medications

as this information is immediately available electronically. Our analysis showed

that there are clear groups of patients where the predictive model is very helpful.

However, there are some groups of patients where it is impossible for the predictive

model to make accurate predictions given the provided information. One of those

groups is patients receiving Diatrizoate Meglumine, a contrast medium for CAT

or PET scans. This medication only indicates that a scan was performed, but

does not carry information about the result of the scan. However, the result of

the scan is the deciding factor whether a patient needs further care or can get sent

home. Thus, with the given information it is impossible for the predictive model

to make a decision that performs better than random guessing. Including more

information in the form of additional features does indeed help with this problem

but pushes the time when a decision can be made further back. One possible

solution is to utilize the predictive model only for the confident groups of patients

and wait for the doctors’ decisions in other cases. This example illustrates that

it is not only possible to understand decision making of a predictive model

through the Model Diagnostic workflow based on aggregated instance-level



28

explanations, but also how it can be applied for semantic validation and

feature engineering on the input data.

1.5.4 User Study on Aggregating Explanations

In order to show the generalizability of the Model Diagnostic Workflow we

conducted a user study to explore the effectiveness of aggregated instance-level

explanations in detecting biases in the input data.

First, we generalized aggregating instance-level explanations to numerical input

data. We achieved this by using histograms of the input features, similar to [64],

ordered by the features’ aggregated importance. Furthermore, we allowed the

comparison of selected, meaningful, subsets to each other. Then, we compared

this aggregated representation, in a user study, to the commonly used approach

of individually inspecting instance-level explanations one-by-one using a tabular

representation.

We found that aggregating instance-level explanations, with our method, signifi-

cantly outperforms inspecting individual explanations in its ability to enable

detection of biases in the data. However, our method requires explanations in

order to perform correctly. Additionally, we found that instance-level explanations

hurt bias detection performance for a tabular representation. We hypothesize

that the added difficulty of inspecting a table without the help of explanations

forces users to interact more strongly with the user interface, thus providing better

results. This is a known effect (see Hullman et al. [54]).

All in all, aggregating instance-level explanations perform as well as explanation-

free tabular representations, which require high user engagement. Additionally,

our method promises a higher scalability due to its independence from the total
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number of instances.

Furthermore, we could reproduce findings from Stumpf et al. [113], claiming that

instance-level explanations might make users over-confident in their understanding

of a model. However, we also showed that aggregated instance-level explanations

overcome this problem.

1.6 Thesis Outline

We organize the remainder of this thesis in the following manner. In Chapter 2

we will describe and discuss the INFUSE system for comparing different feature

selection strategies. In Chapter 3 we will describe and discuss the Prospector system

for inspecting models via partial dependence plots. Following, we will introduce the

Model Diagnostic workflow, aggregating instance-level explanations, in Chapter 4

and discuss its capabilities in the context of binary input data. Afterwards, in

Chapter 5 we will extend this workflow to numerical input data and explore

its effectiveness compared to individually inspected instance-level explanations.

In Chapter 6, we present a summary of the work while discussing key findings,

implications, and open issues, leading to further research opportunities for future

researchers. Finally, in Chapter 7, we discuss the conclusions and future work.
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Chapter 2

INFUSE

Predictive modeling techniques are increasingly being used by data sci-

entists to understand the probability of predicted outcomes. However,

for data that is high-dimensional, a critical step in predictive modeling

is determining which features should be included in the models. Feature

selection algorithms are often used to remove non-informative features

from models. However, there are many different classes of feature se-

lection algorithms. Deciding which one to use is problematic as the

algorithmic output is often not amenable to user interpretation. This

limits the ability for users to utilize their domain expertise during the

modeling process. To improve on this limitation, we developed INFUSE,

a novel visual analytics system designed to help analysts understand

how predictive features are being ranked across feature selection algo-

rithms, cross-validation folds, and classifiers. We demonstrate how our

system can lead to important insights in a case study involving clinical

researchers predicting patient outcomes from electronic medical records.
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Summary:

Research Question:

How do different feature selection strategies compare to each

other?

Key Findings:

• Different strategies prefer different, equally reasonable,

feature sets without having a significant impact on

predictive performance.

• Inspecting and comparing alternate settings lets ma-

chine learning experts develop insights that overwrite

their initial intuitions.

• Rankings from feature selection strategies are not in-

formative enough to help understand model decisions.

Josua Krause, Adam Perer, Enrico Bertini

The visualization research community has usually focused on developing tech-

niques and systems to support the analysis of data sets, with limited analysis of

the relationship between data sets and the construction of models on top of them.

However, there are a growing number of data scientists interested in more than

just interpreting their data: they want to understand their data and predictive

probabilities associated with them. Providing visual support for this kind of task

has become important as many existing applications on the market and in scientific

settings need to solve problems that are predictive in nature, e.g., prediction of

customer behavior, diseases, drug effectiveness.
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Predictive modeling is defined as the process of developing a mathematical tool

or model that generates an accurate prediction [70]. However, building an accurate

predictive model is far from trivial. First, modelers must construct cohorts, or

distinct groups, to divide their data sets into cases and controls. Then, they must

use a feature construction technique to define the feature vector. Next, they must

define the parameters for cross-validation to ensure the results are statistically valid

and robust. Then, they need to choose a feature selection algorithm to extract

the informative features and include them in a model. And finally, they need

to choose a classifier to evaluate the predictiveness of the model. For each of

these decisions, there are a variety of techniques for cohort construction, feature

construction, cross-validation, features selection, and classification to choose from,

and there are currently no systematic guidelines to decide which algorithms are

most appropriate for which types of data sets. Making the wrong choices can

cause predictive models to fail. Kuhn and John argue that many predictive models

fail because, “predictive modelers often only explore relatively few models when

searching for predictive relationships [...] due to either modeler’s preference for, or

knowledge of, or expertise in, only a few models or the lack of available software

that would enable them to explore a wide range of techniques” [70]. We use these

current limitations as motivation to research how visual analytics may improve the

process of predictive modeling.

Our proposed research focuses on an important step in the predictive modeling

pipeline: feature selection. When data is high-dimensional, feature selection

algorithms are often used to remove non-informative features from models. Again,

the analyst is confronted with the decision of which feature selection algorithm to

utilize, and even if the analyst decides to try out multiple types, the algorithmic
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     Breast, Prostate, Colorectal and Other Cancers and Tumors
     Breast, Prostate, and Other Cancers and Tumors
     Cardio-Respiratory Failure and Shock
     Cellulitis, Local Skin Infection
     Cerebral Palsy
     Chronic Obstructive Pulmonary Disease
     Cirrhosis of Liver
     Colorectal, Bladder, and Other Cancers
     Congenital/Developmental Skeletal and Connective Tissue Disorders
     Congestive Heart Failure
     Coronary Atherosclerosis/Other Chronic Ischemic Heart Disease
     Dementia Without Complication
     Diabetes with Neurologic or Peripheral Circulatory Manifestation
     Diabetes with Renal Manifestation
     Disorders of the Vertebrae and Spinal Discs
     Drug/Alcohol Abuse, Without Dependence

Sort by selectionSort by name

Evaluate ModelReset ViewInward Pie GlyphPick CountAverage RankSwitch Layout

DIAGNOSIS

PROCEDURE

Medication

Lab

Figure 2.1: An overview of INFUSE , a visual analytics tool that supports users to
understand the predictive power of features in their models. Each feature is ranked
by various feature selection algorithms, and the ranking information is visualized in
each of the three views within the system. On the left, the Feature View provides a
way to visualize an overview of all features according to their rank using a variety
of layouts. On the top-right, the List View provides a sorted list of all features,
useful for selections. On the bottom-right, the Classifier View provides access to
the quality scores of each model. Each of the views are coordinated, and users can
brush between all three views.

output is often not amenable to user interpretation. This limits the ability for

users to utilize their domain expertise during the modeling process. To improve

on this limitation, we developed INFUSE (INteractive FeatUre SElection), a

novel visual analytics system designed to help analysts understand how predictive

features are being ranked across feature selection algorithms, cross-validation folds,

and classifiers. We describe the tasks associated to the feature selection and

understanding process and provide a design rationale for our solution. We also

demonstrate, through case studies, how the system can lead to important insights

for clinical researchers predicting patient outcomes from electronic medical records.

Concretely, our contributions include:

• A design and implementation of a predictive modeling exploration system,

INFUSE , for understanding how predictive features are being ranked across
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Predictive 
Modeling Pipeline

Running Example:
Predicting Diabetes

Diagnoses in a 
Patient Population

Constructs a 
cohort of 15,038 
patients.  50% 
(7,519) have a 

diabetes diagnosis

Assembles a 
feature vector 

using 4 types of 
clinical events:
Diagnoses, Labs, 
Medications, and 

Procedures

Splits the cohort 
into 10 random 
folds for Cross 

Validation

Executes 4 Feature 
Selection 

algorithms on each 
fold:

Information Gain,
Fisher Score,

Odds Ratio, and
Relative Risk

Evaluates each 
model of selected 

features with 4 
classifiers:  

Logistic Regression, 
Decision Tree, Naive 

Bayesian, and 
K Nearest Neighbor

Cohort 
Construction

Feature 
Construction

Cross 
Validation

Feature 
Selection Classification

Figure 2.2: Steps of a typical predictive modeling pipeline. For each step, we
provide the details of the running example we use throughout the paper.

feature selection algorithms, cross-validation folds, and classifiers.

• An Interactive Model Builder, where users can create customized models

based on insights reached with INFUSE , and then have their results evaluated

in comparison to automated methods.

• A case study of domain experts using INFUSE to explore predictive models

in electronic health records.

2.1 Motivation

2.1.1 Predictive Modeling in Health Care

Predictive modeling is a common and important methodology used in medical

informatics and health care research. For instance, it can be used to detect diseases

in patients early before they progress [14] and to personalize treatment guidelines

to understand which populations will benefit from an intervention [56]. In order to

derive such insights and build successful predictive models, it is common for health

care researchers to implement, evaluate, and compare many models with different

parameters and algorithms. A common workflow for predictive models is a 5-step
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    PROCEDURE - Cpt code
    Medication - Orders
    Medication - Ingredient
    Lab - Lab
    DIAGNOSIS - ProblemList
    DIAGNOSIS - HCC

Figure 2.3: An overview of INFUSE , a system for interactive feature selection. On
the left, the Feature View provides a way to visualize an overview of all features
grouped by type and then sorted by importance. The color key for the feature
types and subtypes are shown at the bottom. The buttons and combo boxes at
the bottom can be used to switch layouts and define the axes of the scatterplot
view shown in Figure 2.6. On the top-right, the List View provides a sorted list
of all features, useful for selections. This list can be filtered using the search box
above. Currently only features containing the term “gl” are shown. The remaining
features are sorted by the number and position of the search term occurrences. On
the bottom-right, the Classifier View (Figure 2.7) provides access to the quality
scores of each model. Users can also select features and build custom models with
the Interactive Model Builder.
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process, illustrated in Figure 2.2: (1) cohort construction, (2) feature construction,

(3) cross-validation, (4) feature selection, and (5) classification. There are currently

few tools that support this complex workflow for predictive modelers.

A recent platform, PARAllel predictive MOdeling (PARAMO) [90], enables

users to specify a small number of high-level parameters to support this 5-step

workflow. PARAMO then uses Map-Reduce to execute these many tasks in parallel.

After the models have been constructed and evaluated by classifiers, users can

compare area under curve (AUC) scores of different models and select the ones with

the highest predictive power. While this ability to construct and evaluate models

at scale is an important breakthrough for clinical researchers, the clinical experts

are still left out of the loop at each of these 5 stages, as each of the algorithms act

as a black box.

This type of workflow limits the ability of clinical researchers to use their domain

knowledge to assist in the model building phase. While multiple models may have

similar performance in terms of prediction accuracy, there is a desire to ensure that

models with more clinically meaningful features are selected [28].

2.1.2 Running Example: Diabetes Prediction

In order to make our contributions concrete, we utilize a running example from

our case study. Our case study involves a team of four clinical researchers interested

in using predictive modeling on a longitudinal database of electronic medical records.

The research team consisted of one MD researcher with a background in emergency

medicine, and three PhD researchers with backgrounds in health care analytics.

Their database features over 300,000 patients from a major health care provider in

the United States. The team is interested in building a predictive model to predict
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if a patient is at risk of developing diabetes, a chronic disease of high blood sugar

levels that causes serious health complications.

From this database, the team constructs a cohort (Step 1) of 15,038 patients.

50% of these patients (7,519) are considered incident cases with a diagnosis of

diabetes. Each case was paired with a control patient based on age, gender, and

primary care physician resulting in 7,519 control patients without diabetes. From

the medical records of these patients, they extract four meaningful types of features

(Step 2): diagnoses, lab tests, medications, and procedures. In total, there were

1,627,736 diagnosis events (6,709 unique types), 361,026 lab events (193 types),

818,802 medication events (344 types), and 853,539 procedures (4,403 types). For

our visualization, we only consider types of features that were picked by feature

selection algorithms which results in 859 features to display.

Next, in order to reduce the bias of the predictive models, the team uses 10

cross-validation folds (i.e. random samples) (Step 3) to divide the population

randomly into 10 groups. After cohorts, features, and folds are defined, the clinical

researchers are ready to use feature selection. The team has four feature selection

algorithms implemented and available to them (Step 4): these include Information

Gain and Fisher Score, which have been used extensively by the researchers, as

well as two new ones which were recently implemented by their technologists: Odds

Ratio and Relative Risk. Finally, the team evaluates each selected feature set as

a model using four classifiers (Step 5): Logistic Regression, Decision Trees, Naive

Bayes, and K-Nearest Neighbors.

Typically, this team executes a pipeline of multiple feature selection algorithms,

and chooses the model that ends up with the best scores from the classifier. Although

this team has an interest in embedding domain knowledge into their models, their
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current platform for running predictive models does not have a user interface where

users can view or edit the specific features that make up each model. Therefore,

resulting models are typically not interpretable by domain experts, and do not

support bringing in their medical expertise by prioritizing or removing features

that may not be relevant to the disease they are modeling.

2.1.3 Task Analysis

The data analysis team initially expressed an interest of having a visual analytics

system to aid them in making sense of the complex information generated by

the modeling pipeline. During our interviews we agreed to focus on the feature

selection and classification steps, as they needed visualizations to reason about

the effects of choosing different combinations of the available algorithms. Without

such visualizations, the researchers ability to choose among different algorithms is

ineffective.

Through our interactions with the analysts we derived three main tasks that

guided the design of INFUSE :

Task1 - Comparison of feature selection algorithms. In data sets with thou-

sands of features, it is important to have a quick way to understand how

feature selection algorithms rank different features differently. Some of the

typical questions the researchers ask are: “Which features are consistently

ranked highly by all the algorithms?”; “How much do the algorithms differ

in their ranking?”; “Are there features that have a high rank with some algo-

rithms and a low rank with some others?”; “How robust are the rankings with

respect to different data samples?”
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Task 2 - Comparison of classification algorithms. The output of each fea-

ture selection algorithm is used to feed a series of classification algorithms. At

the end of this process, the user is left with a F × C number of performance

comparisons, where F is the number of feature selection algorithms and C the

number of classification algorithms. Typical questions our researchers ask are:

“Which combinations of feature selection and classification algorithms give the

best scores?”; “Are there feature selection algorithms that score consistently

better across the set of classification algorithms?”; “Are there classification

algorithms that score consistently better across the set of feature selection

algorithms?”; “Which sets of features are selected in the model(s) that give

the highest performance?”

Task 3 - Manual selection and testing of new feature sets. Related to the

last question of Task 2, the researchers see value in being able to add or

remove features of interest from models. This is desired because there can

be additional domain-relevant knowledge, beyond model performance, to

introduce a desired feature or remove an undesired one. Typical questions

our researchers ask are: “How does the performance of the model increase or

decrease if I remove or add these features?”; “How does a new model compare

to the models automatically built by the system?”

INFUSE was designed to support these three tasks by providing a visualization

of large sets of features and how these features are used by the modeling algorithms.

After several design iterations, we converged on a visual design where features

are first-class citizens of the visual representation: that is, each visual object in

the main view represents a feature and its design and layout reflects information
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obtained from the algorithms. A representation centered on features aligns well

with the analysts’ mental model and makes features easily identifiable through

their names. Each feature, in fact, represents real-world entities like medications,

lab tests and diagnoses, that have rich semantics and can be easily identified and

understood by domain experts.

2.2 Related Work

While visualization of multidimensional data has traditionally focused more

on the visualization of the data space, visualizing data features has important

applications in real-world scenarios; especially when confronted with hundreds or

even thousands of dimensions. In this context, visualization helps data analyst

making sense of the feature space while including their background knowledge in

the process. Visual feature selection can, for instance, help rank features according

to predefined scores, detect similarities among dimensions (thus gauging intrinsic

dimensionality of feature spaces), merge or combine features into composite features.

In the following we review visualization literature that consider the specific problem

of visualizing large sets of features.

2.2.1 Visual Feature Selection

Several approaches to feature selection and dimensionality reduction, in general,

exist in visualization. The early work of Guo [45] introduced the idea of visualizing

relationships between features sets. His system is based on an interactive matrix

view where rows and columns represent features and the cells are colored according

to feature similarity (calculated as entropy and χ2). The matrix is automatically
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sorted to allow selection of subspaces (feature subsets) where data shows interesting

clusters. Visual hierarchical dimension reduction [126] allows detection and grouping

of similar features as well. The technique is based on a hierarchical clustering

algorithm which clusters dimensions in terms of their similarity and present them

in a sunburst visualization [131]. Users can interactively choose an aggregation

level and use the aggregated dimensions to display data with the reduced set of

dimensions. Johansson and Johansson [57] present an integrated environment based

on parallel coordinates visualization where the number and order of dimensions

(axes) presented at any time is guided by a ranking algorithm that takes into account

associations as well as intrinsic interestingness of each feature to interactively choose

how many features to visualize. Similar in spirit is the rank-by-feature framework

[104] in which the data features are organized, ranked and visualized in 1D and

2D visual representations (e.g. histograms, bar charts and scatterplots). The user

can for instance inspect a matrix of feature pairs, ranked by one of the available

ranking functions, and single out those that show interesting associations. A similar

mechanism is also used in scagnostics [128] a quality metric approach [16] that

ranks axis pairs according to the pattern / shape they create in a scatterplot

visualization.

More similar to the solution presented in this paper are visualizations that focus

on plotting dimensions as data points in the visual representation (rather than, for

example, as axes of a visualization where the data items represent records of a data

table). Value and Relation Display visualizes data features as icons in a scatter

plot visualization [130]. The icons are positioned using a multidimensional scaling

algorithm which positions dimensions with similar distributions close together. The

icons are designed to represent the distribution of the data values within the feature.
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Such a display allows to detect groups of similar dimensions and to construct

multidimensional visualizations by subsetting the original feature space. Brushing

Dimensions [120] is a similar approach where data features are plotted as dots in a

scatter plot using descriptive statistics as axes (e.g. variance, median, kurtosis).

The plot is paired with a data item scatter plot which allows for data and feature

linking and exploration.

All of the methods described above are based on the calculation of statistical

parameters from the data as a way to characterize and expose relationships between

the features. Our approach differs in that INFUSE interacts directly with feature

selection and classification algorithms to help in the discovery of predictive feature

sets. A similar approach is found in SmartStripes [84], a visual analytics system

that allows tight interaction between feature selection algorithms and visualization.

Our system differs in that our focus is on the comparison of the output of multiple

feature selection algorithms rather than a single one.

2.2.2 Visualization in Predictive Modeling

Visualization has also been used to aid in the creation of predictive models,

not only in the selection of features that might be helpful in constructing such

models. Visual construction and assessment of decision tree models have been the

subject of a good number of works in the field. Ankerst et al., introduced the

idea of using pixel-based visualization as a way to manually construct decision

trees by giving the user the ability to observe class distributions within each node

and to interactively select splitting points [9, 10]. A similar idea is proposed in

PaintingClass a visualization technique to manually build a decision tree through

interaction of parallel coordinates and multidimensional scaling techniques to
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identify coherent groups of multidimensional data [117]. More recently, BaobabView

has been presented as a system to inspect and validate a classification model through

a tree representation. The paper presents a thorough analysis of the number of

tasks that visualization can support in this area and how they are covered by the

proposed system [122].

While all the aforementioned systems focus largely on decision trees, visual-

ization has been used in other classification and regression systems that leverage

other prediction models. The iVisClassifier [29] for instance uses linear discrim-

inant analysis (LDA), a supervised dimensionality reduction method, to project

multidimensional data in a scatterplot visualization taking into account infor-

mation provided by the data labels. The technique allows to visually link the

high-dimensional structure to the low-dimensional representation and build clusters.

The clusters are then used to classify new data that is progressively introduced

into the system to refine the model. Steed et al., in their cyclone trend analysis

provide a parallel coordinates visualization that leverage computational analysis to

identify features with high predictive power in stepwise regression tasks and allows

to build predictive models for multidimensional climate data [109, 110]. Recently,

a visual analytics system for regression analysis has been proposed by Mühlbacher

and Piringer [88]. The system is more similar to our work in nature as it also

focuses on the predictive power of feature sets and guides the user in the predictive

modeling process. The main difference between this work and ours is our focus on

classification rather than regression models and the use of multiple feature selection

and classification models to better understand how features score across multiple

models.
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Figure 2.4: (a) The glyph representation of a feature in the INFUSE system.
(b) Multiple models for each feature are represented as model sections. In this
example, the feature is divided into four sections, as it was ranked by four feature
selection algorithms (Information Gain, Fisher-Score, Relative Risk, and Odds
Ratio.). (c) Each section is further divided into fold slices representing each of the
cross-validation folds. Each fold slices features a inward-filling bar that represents
the rank of this feature in that fold. A longer bar implies the feature has a better
rank. If no bar appears, the feature was unranked in the fold, and thus did not
meet the importance threshold.

2.3 INFUSE

In this section, we describe the design of INFUSE , which aims to assist predictive

modelers with the tasks introduced in Section 2.1.3. By providing visualizations for

users to interpret the results of feature selection algorithms, as well as the ability

to customize the models with domain knowledge that may have been missed by

the automated algorithms, INFUSE provides a user-centric way of manipulating

predictive models.

2.3.1 Data and Design

We provide a brief overview of data types utilized by the system. A predictive

model, in our setting, is a model trained and validated with machine learning using
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Figure 2.5: Different glyph designs. a shows fold slices with bars growing from
perimeter to center whereas b grows from center to perimeter. c shows a typical
starburst glyph and d shows a matrix using luminance to show the ranks. Note
that in b and c it is difficult to see that this feature is unranked in the third fold
from the right in the top left quadrant. The values in c are difficult to read because
there is no reference to how big the values are. Luminance, as used in d is a harder
perceptual attribute for users to interpret and distinguish than length and area are,
as used by the other glyphs.

a high number of features as an input to train the model. These features are the

primary data items of INFUSE . Each feature has a label representing the feature

name (e.g., Diabetes), a category to which the feature belongs to (e.g. Diagnosis),

and a subtype (e.g., Problem List, the health problems that led to the diagnosis).

Feature selection algorithms receive as an input the whole set of existing features

and return a subset of features selected and ranked according to their estimated pre-

dictive power. Since in our setting we use the output of multiple algorithms at once,

each feature can further be described by the rankings they receive from all these algo-

rithms (where features that are not selected are marked as unranked). Furthermore,

since cross-validation is used, each feature actually gets ranked multiple times by

each algorithm, leading to a total number of #feature selection algorithms×#folds

ranks that quantitatively describe each feature.

The predictive models built using the output generated by feature selection also

provide useful information that we use in our system. Each feature set generated by

the process described above is used as an input to a classification algorithm. The
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algorithm builds a model that corresponds to the specific pair of feature set and

classification algorithm used for its training. The classifier, in turn, can be described

in terms of its performance using the Area Under Curve (AUC), a measure that is

commonly used by modelers to give numerical performance scores to models [70].

The primary goal of INFUSE is to visualize this information so that users can

understand the predictive power of features in their models. The user interfaces

is organized around three main coordinated views as shown in Figure 2.3: the

Feature View provides a way to visualize an overview of all features providing

information about their attributes and ranking received from feature selection; the

List View provides a sorted list of all features to get easy access to their labels and

to assist the user in searching features according to some predefined criteria like

their name or category; the Classifier View provides access to the quality scores of

each model built using the process described above. The views are coordinated so

that selections in one view are propagated to all the other views. In the following

we provide additional information about the design of each view.

2.3.2 Feature View

The primary component of INFUSE is the Feature View, a zoomable visual-

ization that displays all features as glyphs. Each glyph represents a feature from

the original data set and is designed to provide the information outlined above.

The main purpose of the feature view is to allow comparison between features

and detection of interesting commonalities and differences in terms of how the

algorithms rank them. The view allows the user to display the feature set according

to two different configurable layouts: a grid layout (the default), which favors

legibility, and a scatter plot layout which aims at laying out and grouping the
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Figure 2.6: Different axis combinations for the scatter-plot layout. In the average
rank is plotted against the pick count. Most of the features appear in the lower half
because features are rarely picked by more than two algorithms in this example.
The bottom-right shows features that are only chosen by two models but were
ranked very high by them. shows the median rank plotted against the importance.
Notice that the plot looks similar to since importance is a combination of the axes
from . The axes in are best rank versus average rank. Features can only appear
below the diagonal. The standard deviation of the ranks is plotted against the
importance in . The peak to the bottom right corner consists of features that are
rarely picked and therefore have lower variance. The peak to the top right consists
of features that are consistently high ranked.

features according to various statistics we collect from the ranks. In the following

sections, we describe the design of the glyph as well as the different layouts.

2.3.2.1 Feature Glyph Design

As described in Section 2.1.1, the features are ranked by multiple feature

selection algorithms and across multiple cross-validation folds. INFUSE ’s glyph

design embeds all of this information in a circular glyph that shows all the rankings

obtained from each algorithm/fold pair. As shown in Figure 2.4(a), the glyph is

divided into equally-sized circular segments; where each segment represents one

of the ranking algorithms. For instance, in Figure 2.4(b), since the feature was

ranked by four feature selection algorithms, the circular glyph is divided into four

sections. Each of these sections are then divided further into a fold slice for each
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cross-validation fold. For instance, in Figure 2.4(c), each feature selection algorithm

was executed on 10 cross-validation folds, therefore there are 10 fold slices.

Within each fold slice, there is an inward-growing bar (that is, starting from the

perimeter and growing towards the center) that represents the rank of the feature

in a particular fold. For example, in Figure 2.4(c), the feature is higher ranked in

Fold 3 than in Fold 4 as the bar in Fold 3 stretches closer towards the center than

in Fold 4. Features that are unranked, because their scores are too low to meet the

minimum threshold requirement of the algorithm, are represented as empty slices

with no bars. We designed fold slices with inward-growing bars on purpose to help

distinguishing between slices with empty values from those with low values. During

our design iterations we realized in fact that outward pointing bars would make

this distinction too hard to make. Since the information of whether a features is

picked up by an algorithm is crucial for its interpretation we decided to opt for this

design.

Multiple glyph designs were considered and tested within INFUSE . For instance,

Figure 2.5b shows an example of a glyph where the fold slices grow from the center

towards the perimeter. This makes it difficult to identify fold slices with poor ranks.

Consider the situation where there is a lowly-ranked feature only ranked in one fold

slice section. When zoomed-out, the glyph would just appear as a circle with a dot

in the center, and the user would not know which model or fold ranked the feature.

Furthermore, it is difficult to see in which fold a feature is unranked when the

surrounding models rank the feature. Other glyph designs that were tried involve

a star glyph (Figure 2.5c) and a matrix glyph (Figure 2.5d). The star glyph was

less effective as users were not afforded a reference point for the maximum ranking

and the design leads to some visual artifacts (like high density in the center and
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lower density in the outer part). The matrix glyph was less effective, as perceiving

differences is more difficult when using luminance than length and area as we do in

our final design.

Users can gain more details about each section and slice by hovering over the

region of interest to view an informative tooltip. Furthermore, an overview key is

available to remind users of the position of each model type. The background color

of the glyph corresponds to the subtype of the feature and a color key can also be

shown as a reference to remember the meaning of the color coding (see bottom-left

corner of Figure 2.3).

2.3.2.2 Ranked Layout

The first layout available to users is the ranked layout, which arranges glyphs

by their feature type, and sorts them by their overall importance. The name of the

feature type is shown at the first position in the group, after that the features are

laid out row-first in a grid-like manner, as shown in Figure 2.3. This space-filling

approach results in features that are always visible without overlaps.

Features within a group are sorted by their importance. Importance is computed

as average rank with penalized unranked features:

rankbest = min
m∈M×V,f∈F

[rankm(f)]

i(f) =
1

|M × V |
[2 · rankbest · unrankedM×V (f) +

∑
m∈M×V

rankm(f)]

where M is the set of models, V is the set of cross-validation folds, F is the

set of features, rankm(f) is the rank of a feature f in the combined model and

cross-validation fold m, and unrankedM×V (f) is the number of such combined
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models that did not choose f . Assume rankm(f) = 0 for unranked features f in

the combined model m only when computing i(f). Note that a small value for i(f)

means higher importance. The optimal value is 1.

2.3.2.3 Scatterplot Layout

The second layout available to users is the scatterplot layout, where users can

select choices for both axes of the scatterplot. The choices for axes include:

• the average rank of a feature

(ignores unranked folds and models)

• the pick count of the number of combined models

and cross-validation folds that picked the feature

• the importance of a feature (defined above)

• the best rank of the feature

• the median rank of the feature

(ignores unranked folds and models)

• the standard deviation of the feature’s ranks

(ignores unranked folds and models)

By default, the average rank is chosen for the horizontal axis and the pick

count is chosen for the vertical axis, as shown in Figure 2.10. This combination

of axes led to the most insights during the case studies. However, if users choose

to select different axes or pivot to a different layout, animation is used for the

transition. By using slow-in and slow-out animation, users are given time to
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anticipate the movement direction of the feature, and are able to track features

during the transition easily.

2.3.2.4 Interaction

The Feature View provides a number of interactions. Zooming and panning

enables a user to get an overview of the displayed data and focus on the details

of a small number of glyphs. This exploration can be reset by clicking on the

“Reset View” button, or double clicking on the background. Double clicking on a

feature glyph zooms in on the feature so that it fills the viewport. In addition, a

tooltip is shown when a user hovers the mouse over a glyph. This tooltip provides

information about the name, type, and subtype of the represented feature, as

well as all of the statistical information used for the scatterplot layout. Hovering

over a fold slice in the glyph gives further information about the feature selection

algorithm, the cross-validation fold, and the feature’s rank in question. In order to

select features for interactive model building (see Section 2.3.5) the user can click

on glyphs to toggle the selection or use a lasso gesture to select a group of features.

As mentioned in the previous section, users can change the layout of the glyphs

with the buttons below the Feature View.

2.3.3 List View

A simple yet important view of features is the List View, which provides a

sorted list of all features, useful for selecting features by name. Each list item

contains the name of the features along with its glyph. The selection of a feature

can be toggled in the list by clicking its list item. As the selection of features is

linked between views, this sorted and labeled view supports users finding particular
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Figure 2.7: The Classifier View displays the results of the classification algorithms
for all models. Rows represent feature selection algorithms and columns represent
classification algorithms. A more detailed description of the cells can be seen in
Figure 2.8. The currently selected model is highlighted in orange, and the results
for the same fold in different feature selection algorithms are highlighted in yellow.
When users select a model, the features that make up the model are highlighted in
the Feature and List views.

features of interest and highlighting them in the complementary views.

The list view can be sorted in a few different ways. By default, features are

first sorted by the type of the feature, then by its subtype, and finally by its name.

Users can also sort the list by selection, which means currently selected features

are displayed at the top and the unselected features appear after them. Within

these groups, the features are then sorted by their importance.

In addition to sorting, a user can filter the list view via the search box on

the top. Search terms are separated by white-spaces and the list view shows all

features that contain all search terms in the name, type, or sub-type. The results

are ranked by the sum of the inverse positions of the search terms within the feature

description. This favors terms occurring at the beginning of the feature’s name and

terms that occur multiple times in one feature description (see the top right panel

of Figure 2.3 for an example query).
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Figure 2.8: Each cell in the Classifier View represents the scores of a particular model
by a particular classifier. On the left, there is a bar for each of the validation folds.
The height of each bar corresponds to the AUC score for each fold. Immediately
to the right of the fold bars, the thicker and darker bar and its height represents
the average value across all folds. This bar also features an error bar depicting the
standard deviation across the folds. Finally, to the right of the bars, there is a
numerical representation of the average AUC score.

2.3.4 Classifier View

The Feature View and the List View both focus on supporting users to interpret

the rankings of features across multiple predictive models. However, it is also

important for users to understand the quality of each model in predicting the

appropriate outcome. The Classifier View, shown in the bottom-right panel of

INFUSE , is where the quality of each the predictive models can be analyzed.

Typically, predictive models are evaluated using classification algorithms which

provide an AUC score (area under ROC curve, the sensitivity as function of the

false positive rate). Perfect models will have an AUC score of 1, whereas random

guessing will have an AUC score of 0.5. The Classifier View was designed to show

AUC scores for each model and fold.

As illustrated in Figure 2.7, each row of the Classifier View represents the

predictive model that resulted from each feature selection algorithm. Each column

represents a classification algorithm. Multiple classifiers are used because there are

a variety of techniques to evaluate models, and in order to avoid biases, INFUSE

provides the ability to compare the output from multiple classifiers.

Each cell, as shown in Figure 2.8, has several components. On the left, there is
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a bar for each of the validation folds. The height of each bar corresponds to the

AUC score for each fold. There is also a slightly thicker and darker bar immediately

to the right of the fold bars, and its height represents the average value across all

folds. This bar also features an error bar depicting the standard deviation across

the folds. Finally, to the right of the bars, there is a numerical representation of

the average AUC score. As this information is important for predictive modelers to

reason about the quality of models, these values are given visual prominence. The

bars, however, can be used to also reason about the quality across all folds.

Rows are sorted by the average AUC scores across all classification algorithms,

so more accurate predictive models appear at the top of this view. Users can

interact with this view in several ways. Clicking on a fold bar selects all features

that were a part of this model and highlights them in the List and Feature views.

The selected fold bar is highlighted in orange, and other scores this fold received by

the other classifiers are highlighted in yellow so that they can easily be compared

(as shown in Figure 2.7.)

2.3.5 Interactive Model Builder

One of the most important aspects of INFUSE is that in addition to allowing

the comparison of models, it also enables the creation of new models based on

insights. Users can select features for model building in a variety of ways. They

can select all of the features from existing models by clicking on a model in the

Classifier View. This will highlight and select all of the features that were used

in the model. Users can then augment these lists, or start from an empty set, by

selecting individual features when clicking on them in the Feature or List view.

In order to select multiple features, a lasso selection technique is available in the
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Figure 2.9: INFUSE ’s Interactive Model Builder allows users to select sets of features
and measure its quality. Selected feature glyphs are highlighted by saturating their
color. The List View is sorted to show the selected features by their importance.
After a user has made their selections, they can evaluate their model by clicking
the “Evaluate Model” button. This adds a new blue row to the the Classifier View,
showing the results of the evaluation for the user-defined model.

Ranked and Scatterplot layouts.

After a feature set has been collected, INFUSE can automatically evaluate the

predictive performance of the user-defined model. By clicking the “Evaluate Model”

button, the new model is scored across all cross-validation folds and classifiers, and

the results are added in the Classifier panel as a new blue row. In the example in

Figure 2.9, the user-defined model out-performed the automated models and it is

ranked at the top of the Classifier View. Note that the user created model does

not appear in the glyph. This is due to the fact that the user does not need to

rank the features in order to obtain a classification result and that the feature set

is equal for all cross-validation folds.
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Figure 2.10: The scatter-plot view allows users to compare multiple types of
rankings. In the case study, users became curious of the medication features that
were chosen by only half of the models. When reviewing these medications with
domain experts, it became clear that features picked by the upper-half algorithms
were as clinically significant as those picked by the bottom-half. This indicates that
merging results from feature selection algorithms makes sense for this predictive
model.

2.4 Case Study

Throughout our paper, we have used a running example of a team of clinical

researchers using predictive modeling to classify patients at high risk of developing

diabetes. In this section, we describe how INFUSE has led to a variety of insights

when exploring the features of the models.

2.4.1 Insight 1: Data Issues

When the clinical researchers learned of INFUSE ’s capabilities to compare

multiple feature selection algorithms, they decided to expand their pipeline’s

feature selection algorithms from 2 to 4. The team has used Information Gain and

Fisher Score extensively in prior work, and typically uses these same techniques due

to their familiarity and past success. Nonetheless, the diabetes data set introduced
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in Section 2.1.2 was new to them, and they were unsure which techniques would

be the most appropriate. So, they asked their technologists to implement two new

techniques: Odds Ratio and Relative Risk.

After all four algorithms were available, they executed their modeling pipeline

using PARAMO [90] and connected the results to INFUSE . Instantly, the team

was surprised at the patterns that the visualization made evident. The visual-

ization indicated that there seemed to be little agreement between their two old

algorithms, and their two new algorithms for the best features. The glyphs clearly

indicated that many of the features were highly ranked by two of the four feature

selection algorithms, and unranked by the other two, resulting in glyphs resembling

alternating half-circles, as shown in Figure 2.11. The team was quick to note that

the resulting accuracy across all four models were not significantly different, so

this non-overlap would have probably gone unnoticed if the team just looked at

resulting predictive scores at the end of the pipeline as they typically do.

As INFUSE gave them the opportunity to examine multiple algorithms at the

feature-level, they were curious as to why this trend of non-overlapping feature

rankings occurred. They investigated the scores associated with each feature rank

and noticed that many of the features had scores of ∞ from the Relative Risk

algorithm. It turned out there was a bug within the Relative Risk implementation

where a divide by zero error could happen if a feature did not occur in any of the

control patients. After fixing this bug, they noticed that much of the non-overlap

still was evident. Looking more closely at the algorithms provided a reason why

the two new algorithms behave very differently: they realized that both of the new

algorithms only look at the presence and absence of the feature between the case

and controls, and do not pay attention to the feature values in any other way (e.g.,
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distribution of values). This is in contrast to the Fisher Score and Information Gain

algorithms that take the actual feature values into account. This means that for

features that are present in both case and control groups in the same proportion,

there is no discrimination value.

One of the team members mentioned, “Each feature selection algorithm captures

different types of information. INFUSE allows you to see what the effect of that

information is being captured and gives you insight into the robustness of your

predictive model.”

As different algorithms will make sense for different purposes depending on

the data set and goals, INFUSE provides an ability to inspect the features and

determine which algorithms produce ranked sets of domain-relevant features.

2.4.2 Insight 2: Clinically Relevant Features

After the data issues were solved, the researchers began investigating the content

of the predictive features. Using the scatterplot view, they inspected all of the

medications that were ranked by all feature selection algorithms and folds and

found that they were antihyperglycemic medications, which are common treatments

to lower the blood sugar of diabetes patients, and made clinical sense to be ranked

high.

However, looking towards the center of the scatterplot, where the features are

only ranked by half of the algorithms and folds, the researchers noticed a cluster of

medications that had half-circle patterns like those described above. This region is

highlighted in Figure 2.10. By mouse-hovering these features to read their names,

it became clear that those ranked high by the upper-half of the circle (Information

Gain and Fisher Score) were as clinically relevant and similar as those ranked by the
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bottom-half algorithms (Relative Risk and Odds Ratio). This provided feedback

that in predictive modeling it is not safe to assume that one single feature selection

algorithm is able to detect all possible interesting features and also that having a

system like INFUSE allows them to build a much richer picture of what kind of

feature sets may lead to effective modeling. Without such a tool they would be

restricted at evaluating one single algorithm at a time or, at best, restricting the

comparison to a small number of features.

After interacting with the system one of the team members said, “If you just

use one feature selection algorithm, you’re only getting certain types of features.

INFUSE gives you a guide to what you might be missing. Using a combination

type approach [with the Interactive Model Builder] will lead to stronger predictive

models.”

The clinical team is now going to re-think their strategy about how they build

predictive models and may consider using features by merging top ranked features

from different types of feature selection algorithms. The researchers are convinced

that by merging features, in addition to the interactive model building capability,

their predictive models will be improved.

2.5 Future Work and Conclusion

There remains a great deal of research to further improve the analytical process

of predictive modelers. INFUSE only focuses on the feature selection step of

predictive modeling. Each of the other steps would benefit from a visual interface

to explore and parameterize the pipeline as well.

The search capabilities also have room for improvement by allowing more
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Figure 2.11: The clinical researchers found an interesting pattern among the glyphs
indicating non-overlap of feature selection algorithm results. These features were
highly ranked by 2 of the 4 feature algorithms, and unranked by the other 2,
resulting in glyphs that resemble half-circles.

complex queries like features with a given range of ranks or features picked by a

given algorithm, which would ease the task of finding relevant features for a user.

Also, expanding the range of the search box to filter also in the Feature View may

reduce the number of overlapping glyphs in the scatterplot view. Other clutter

reduction techniques could also be available to users, such as a semantic zooming

overlap resolution strategy that can jitter glyphs that overlap when the view is

zoomed in.

Finally, to date, this tool has been used extensively for predictive modeling on

clinical data. However, INFUSE was designed to be domain-independent and can

easily be used for other domains in need of high-dimensional predictive modeling.

Our future work includes additional case studies in other domains to ensure the

robustness of our tools. This would also give the opportunity to explore the

scalability of the design. Typically, the number of cross-validation folds is not

more than ten. However, certain analysts may wish to compare a larger number of
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feature selection algorithms which would decrease the amount of space available per

algorithm in the glyph. While similarly-ranked features would still appear visually

alike, it may become difficult to identify certain algorithms or folds without the

help of interaction. The overall number of features also plays a role in scalability

concerns.

In conclusion, predictive modeling techniques are increasingly being used by

data scientists to understand the probability of predicted outcomes. We present

INFUSE , a tool that lets users interactively create predictive models. Typically,

the predictive modeling pipeline leaves users out of the loop, and the algorithms

operate as a black box. By giving users the power to interact with the results of

feature selection, cross validation folds, and classifiers, INFUSE has shown promise

to improve the predictive models of analysts. We further demonstrated how our

system can lead to important insights in a case study involving clinical researchers

predicting patient outcomes from electronic medical records.

The authors thank Kenney Ng for providing his expertise in predictive modeling.

The authors also thank the anonymous healthcare institution who provided the

data for the clinical researchers experiments.

2.6 General Discussion

INFUSE [66] explored the viability of the popular method of using feature

importance measures to understand model behavior. Even though there is no direct

influence from the model itself feature importance gives valuable insights due to

its role in feature selection for the model and the similarity of its computation

and the model’s construction. However, our experiments showed that there is
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little consensus between different feature importance algorithms, even though equal

model performances were achieved. This is likely due to redundancies in features

in the input data but shows that those methods are not able to properly point

out those occurrences. Furthermore, it also shows that those feature importance

methods are too far from the actual model to gain sufficiently strong insights into

the model’s behavior. This result encouraged us to explore techniques of model

dependent feature importance metrics, such as Prospector described in the next

Chapter.
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Chapter 3

Prospector

Understanding predictive models, in terms of interpreting and identify-

ing actionable insights, is a challenging task. Often the importance of a

feature in a model is only a rough estimate condensed into one number.

However, our research goes beyond these näıve estimates through the

design and implementation of an interactive visual analytics system,

Prospector. By providing interactive partial dependence diagnostics,

data scientists can understand how features affect the prediction overall.

In addition, our support for localized inspection allows data scientists to

understand how and why specific instances are predicted as they are, as

well as support for tweaking feature values and seeing how the prediction

responds. Our system is then evaluated using a case study involving

a team of data scientists improving predictive models for detecting the

onset of Diabetes from electronic medical records.
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Summary:

Research Question:

How can partial dependence be leveraged to gain diagnostic

insights into machine learning models?

Key Findings:

• The partial dependence based feature importance score

allows to effectively detect model errors.

• Detectable errors include: over-fitting, under-fitting,

biases in the data caused by imputation, and leaking

labels caused by incorrect cause-effect relationships.

• Localized inspections help to understand the how and

why of specific instance predictions by finding locally

impactful features.

Josua Krause, Adam Perer, Kenney Ng

In the era of data-driven analytics, there is growing demand to generate and

deploy predictive models in a variety of domains so that the patterns unearthed from

massive amounts of data can be leveraged and converted into actionable insights.

Predictive modeling is defined as the process of developing a mathematical tool or

model that generates an accurate prediction [70]. As an example, in health care, if

one can model the data characteristics of patients who will likely develop Diabetes,

health care institutions could deploy such a model on their patient databases, and

automatically flag high risk patients to clinicians to make sure they are being

treated appropriately. However, building such models on noisy, real-world data is
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quite challenging.

Data scientists often turn to machine learning, where the goal is to create

predictive models based on information automatically learned from data with

ground truth. However, these machine learning techniques are often black-boxes

and may be selected based only on performance metrics such as high accuracy

scores, and not necessarily based on the interpretability and actionable insights of

the model. There has recently been a variety of techniques to inject humans-in-the-

loop when building predictive models based on machine learning, from interactive

training [5] to interactive feature selection [66]. However, interactive systems to

effectively assess and evaluate the interpretability and actionable insights of a

predictive model that go beyond simple accuracy metrics is still lacking. We believe

bringing humans into the loop at this stage can possibly lead to better models and

consequently improved outcomes when the models are deployed.

Our research aims to support data scientists to go beyond judging predictive

models solely based on their accuracy scores by also including model interpretability

and actionable insights. Towards this goal, we developed Prospector , a novel visual

analytics system designed to help analysts better understand predictive models.

Prospector leverages the concept of partial dependence, a diagnostic technique that

was designed to communicate how features affect the prediction, and makes this

technique fully interactive. Prospector also supports localized inspection, so users

can understand why certain data results in a specific prediction, and even lets users

hypothesize new data by tweaking values and seeing how the predictive model

responds. We also demonstrate, through a case study, how the system can lead

to important insights for clinical researchers building models that try to predict

patient outcomes based on electronic medical records.
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Concretely, our contributions include:

• A design and implementation of an interactive visual analytics system, Prospec-

tor , for assessing the interpretability and actionable insights of trained pre-

dictive models by supporting:

– Interactive partial dependence diagnostics to understand how features

affect the prediction overall. There are novel visual representations,

sampling strategies, and support for comparing multiple models.

– Localized inspection to understand how and why specific instances are

predicted as they are. Users can interactively tweak feature values and

see how the prediction responds, as well as find the most impactful

features using a novel local feature importance metric.

• A case study of data scientists using Prospector to improve predictive models

for detecting the onset of Diabetes trained from electronic medical record

data.

3.1 Motivation

3.1.1 Machine Learning for Predictive Modeling

Data scientists often use machine learning to create predictive models based on

known properties of training data, which acts as the ground truth. Machine learning

algorithms typically work in two phases: the training phase and the prediction

phase. In the training phase, parameters of the model are learned using training

data. The prediction phase then computes predictions using the trained model.
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Below, we describe several machine learning algorithms that are commonly used

and also utilized in the case study.

A decision tree is one such algorithm, which is a tree whose nodes are rules that

decide how to proceed down the branches of the tree, according to the range of

values for a specific feature. The decision making starts at the root of the tree and

leaves carry the prediction results. Decision trees are popular in machine learning

as they allow data scientists to model arbitrary functions. However, the more nodes

a tree has, the harder it is to understand the reasoning behind outcomes. Logistic

regression is another popular algorithm that is easier to understand, as features

can only positively or negative influence the prediction, and the rate of influence is

fixed. This is achieved by defining a hyper-plane in the feature vector space, where

the outcome of the prediction depends on how close to and on which side of the

hyper-plane an instance is.

Another popular algorithm is random forests, which combine the output of

multiple decision trees. A random forest is an example of an ensemble model, which

combines the output of several weak machine learning models to yield an overall

better result with less bias and variance than a single strong model. However, this

makes ensemble models less interpretable since each weak model has only a small

influence on the outcome.

3.1.2 Predictive Modeling in Health Care

In order to make our contributions concrete, we utilize a motivating scenario

that emerged from our case study. The case study involves a team of five data

scientists interested in using predictive modeling on a longitudinal database of

electronic medical records. The research team has a background in health care
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Figure 3.1: An illustration of how partial dependence is computed for the feature
“Glucose”. On the left are four patients’ original feature values. In the middle, the
“Glucose” values are all changed to 100, and the corresponding predictions change.
Similarly, on the right, the “Glucose” values are all changed to 130, and again the
risks are different. This demonstrates the impact of the “Glucose” feature on risk
prediction.

analytics and their database contains 4,000 patients from a major hospital in the

United States. The team is interested in building a predictive model to predict if

a patient is at risk of developing Diabetes, a chronic disease of high blood sugar

levels that may cause serious health complications.

The team of data scientists manages to develop a highly accurate predictive

model for detecting patients at high risk of developing Diabetes. They determine

its effectiveness by measuring the common metrics used by predictive models (e.g.,

accuracy and AUC scores [70]). They also followed the best practices of building

predictive models. They worked with clinical researchers to properly define cohorts

of patients with Diabetes (cases) and matched patients without Diabetes (controls)

by thoroughly searching through the electronic medical records. They constructed

features based on lab tests, diagnosis codes, procedures, demographics, and patient

conditions from the records. They used cross-validation to ensure their models

were robust. They used a variety of state-of-the-art feature selection methods to
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utilize the most informative features in the model while keeping it as generalizable

as possible. And they used a variety of effective classifiers to do the training

and evaluation. After trying various combinations of these techniques, the model

with the highest accuracy metrics was selected and presented to the appropriate

stakeholders at the health care institution.

Their stakeholders were impressed by the high accuracy scores of the model.

But when they asked the data scientists for more information about what was inside

of the model, the reports only described the top features of the model and their

associated “importance” weights. The stakeholders recognized many of the feature

names, and it appeared to make clinical sense. However, there were also some

surprising ones that led to intellectual discussions. But the stakeholders demanded

to know more. They wanted a clearer sense of how certain features impacted the

prediction. Furthermore, they wanted to understand how the values associated with

the features (e.g., the results associated with lab tests) impacted the prediction.

They also were curious to interact with the model to test hypotheses about how the

model would react to hypothetical patients of interest. When confronted with these

questions, the data scientists shrugged. In the data scientist’s defense, it is difficult

to summarize and interpret complex models and there are few tools and techniques

available to address the stakeholders’ requests. So now the stakeholders are faced

with a hard decision: do they deploy a predictive model in their institution that

appears to have high accuracy but is also somewhat of a black-box?

Although this scenario is motivated by our case study, our other projects and

interviews suggest these are not atypical requirements. Our work is motivated to

support the development of more comprehensible predictive models.
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Figure 3.2: Partial dependence plots. The black curve shows the average predicted
risk (probability of a certain outcome) if for all rows in the data the value of this
feature was the given value of the horizontal axis. The red line shows the average
predicted risk for the original data. The vertical line shows the mean of the observed
values and the histogram below the plot shows the distribution of observed values.
Dotted lines show the range of one standard deviation around the mean values.

3.1.3 Partial Dependence

The most widely used technique to understand the relationship between a

feature and a prediction is by computing partial dependence [41, 48]. The idea of

partial dependence plots is to treat predictive models as a black-box and observe

how changes in the input affect prediction outcomes. When inspecting only the

partial dependence of one input feature at a time, Formula (3.1) can be used to

compute a partial dependence plot.

pdpf (v) =
1

N

N∑
i

pred(xi) with xif = v (3.1)
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N is the number of rows in the input matrix x, pred is the prediction function

that takes one input row, a feature vector, and returns an outcome probability,

and f is the feature used to compute the partial dependence plot. The formula

computes the average outcome over all input rows while changing the value of

feature f to the input value v for each row xi. The original input data is kept fixed.

This allows for observing the influence of f on the predicted probabilities.

In order to make this function more concrete, consider the illustrative example

in Figure 3.1, where each input row is a patient, and each column is a feature. The

last column represents the output of the predictive model that predicts if a patient

is at low-risk or high-risk for developing Diabetes. In Figure 3.1a, the patients’

original feature values (age, BMI (Body Mass Index, a standard way to quantify

obesity), and glucose level (a standard way to determine Diabetes)) are shown. If

one wants to examine the impact of the glucose feature on the prediction, partial

dependence can be applied by keeping all of the other features (age, BMI) as they

were, but fixing glucose to a set of fixed values to see how that feature impacts the

prediction. For example, in Figure 3.1b, the glucose values (highlighted in yellow)

are fixed to 100, which yields predictions of only 1 patient being high risk, instead

of the original 2. Conversely, in Figure 3.1c, glucose is fixed to 180, and 3 patients

are predicted to have high risk. Thus, there appears to be partial dependence of

glucose on the prediction.

Partial dependence is typically visualized as a partial dependence plot, as shown

in Figure 3.2, which is a line graph that plots the fixed values of the target feature

on the x-axis, and the corresponding predicted risk (i.e., probability of a certain

outcome) on the y-axis.
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3.2 Related Work

3.2.1 Motivation for Interpretability

Modern machine learning algorithms are able to create more reliable and precise

models but they are increasingly complex and come with the price of being harder

and harder to interpret (Breiman [21]). This inverse relation of understandability

versus expressiveness of a model introduces the need to find ways to improve the

interpretability of complex models to overcome this disadvantage. Lim [74] asks

questions such as “Why did X happen?”, “Why not Y?”, “What happens if I

do Z?”, and “How do I make X happen?” to explain complex mechanisms like

machine learning models. Our system allows users to interactively ask and answer

such questions. Kulesza et al. [71] use explanatory debugging by conveying how

a model came to its prediction in order to be able to correct mistakes. On the

other hand, Patel et al. [93] use multiple classifiers to better understand input data.

Steeg and Galstyan [111, 124] use total correlation to build a hierarchy of features

explaining their role in the data.

3.2.2 Algorithm Specific Model Visualization

In the past, research has primarily focused on understanding and interacting

with specific machine learning algorithms. Often the focus is on the internal weights

of the trained models. For Bayesian networks, showing probabilities of the nodes

(Becker et al. [13]) and how the input is propagated (Correa et al. [58]) has been

used. For Support Vector Machines, projection techniques (Caragea et al. [24])

and Nomograms (Jakulin et al. [55]) to see the “cut” in the instances were utilized.

Visualizing and interpreting the graph of a neural network has also been used by
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Tzeng and Ma [121]. Kim et al. [61, 63] introduce graphical models that allow for

interpretability of its features. [61] use a colored matrix of features by category

to show distinguishable features computed by their model. Caruana et al. [25]

use high-performance generalized additive models (GA2Ms) that allows visual

inspection of the influence of its input features on the outcome much like partial

dependence.

3.2.3 Model Result Visualization

However, showing only internal, algorithm specific weights is often not enough.

Plate et al. [98] and Olden [91] show how input features influence the outcome

of neural network classifications. Xu et al. [129] interprets the graph of a neural

network used for image classification to retrieve which part of an image was

responsible for a specific classification result. These techniques aim in the same

direction as partial dependence but are limited to only neural networks. They

cannot be used to support the ability to compare different machine learning models

across algorithms.

Having access to the internals of a machine learning algorithm also allows

direct interaction with the models and to improve them on the fly. BaobabView

(van den Elzen and van Wijk [122]) offers interactive decision tree construction.

Steed et al. [109, 110] guides regression model creation by enhancing interaction

with the input data. EnsembleMatrix (Talbot et al. [114]) allows users to combine

already computed classification models to build ensemble models. Some recent

interactive machine learning tools [5, 6, 7, 8, 60, 62, 72, 86, 92]) are more algorithm

agnostic, but depend on general performance measures like confusion matrices, area

under ROC curve (AUC) measures, result distribution of instances, and feature



74

weights according to model independent statistics.

Frank and Hall [39] use 2D projections of the data to show results for multiple

classification algorithms, as well as Rheingans and desJardins [101] with self-

organizing maps.

3.2.4 Probing Models

Partial dependence was proposed by Friedman [41] for analyzing gradient

boosting models and has since been used for other models as well (e.g., Ehrlinger [37]

uses partial dependence to analyze the behavior of random forests in the R package

ggRandomForests).

Cortez and Embrechts [32, 33] and Kim et al. [63] use sensitivity analysis to

analyze and compare machine learning models of different algorithms. Sensitivity

analysis is similar to partial dependence except that it uses a few base vectors

(usually the mean, median, or quartiles of all observed values) instead of computing

the probabilities over all instances. This method is faster than partial dependence

but may miss critical details about the prediction function especially if the function

is strongly non-linear.

Goldstein et al. [42] extends the idea of partial dependence by using Individual

Conditional Expectation (ICE) plots which show one line for each row of the

input data. We found, however, that this often clutters the plots too much and

makes them harder to interpret. We experimented further with showing standard

deviations and quartiles of the partial dependence line but discarded this approach

since the spread of the partial dependence results is always expected to be large

unless one feature dominates the classification significantly and is able to solely

change the classification even for the furthest instance.
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Figure 3.3: Different sampling strategies for partial dependence plots. The leftmost
plot uses a näıve sampling which misses the dip in the predicted risk for a Glucose
value around 105. Using the thresholds of the trees in the random forest the middle
plot shows all details of the displayed model. The rightmost plot simplifies this by
detecting co-linear points and summarizing them into lines improving readability.
The dip in the predicted risk is due to imputation of missing values to the mean of
the observed values. This increase in local noise shifts the prediction towards the
overall average predicted risk (the horizontal red line). Most patients have never
had their Glucose value measured.

By not restricting ourselves to sampling only the observed input space, our

approach on partial dependence enables a deeper analysis of the machine learning

model. Furthermore, accepting the costs of computing partial dependence over all

instances yields proper results even for highly non-linear models, while also not

overwhelming users with too much detail. This is strengthened even further by our

novel approach of using implementation details of the inspected models to improve

the sampling and the representation of the results.

3.3 System

In order to integrate partial dependence and localized inspection into our pipeline

we propose Prospector , a web-based interface. The server side of Prospector

can load any machine learning model accessible via python, or integrate with
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existing predictive modeling pipelines such as PARAMO [90]. Although this paper

demonstrates the system on clinical data, the tool is able to handle predictive

models for other domains. For example, the tool has also been used with exploring

models that predict real estate prices, as well as classic data sets from the UCI

Machine Learning Repository [73].

In this section, we first describe Prospector ’s novel enhancements of partial

dependence plots. Then, we describe how Prospector leverages partial dependence

to support localized inspection. Finally, we describe the workflow of how these

techniques are integrated into Prospector ’s UI.

3.3.1 Partial Dependence Plots

Partial dependence is typically visualized as a partial dependence plot, which

is a line graph that plots the fixed values for the target feature on the horizontal

axis, and the corresponding predicted risk (probability of a certain outcome) on

the vertical axis. In Prospector , we enhance the plot by adding a red reference

line with the average predicted risk of the model on the original data, as shown in

Figure 3.2. In addition, a black vertical line indicates the average observed value

of the input data for the current feature. Both reference lines are accompanied

with dotted lines showing one standard deviation in both directions from the mean

value. To help with validating insights and assigning importance, a histogram of

the observed values in the original data is also shown below the plot.

3.3.1.1 Sampling Partial Dependence

One of our core contributions is the ability to effectively treat partial dependence

as a black-box for inspection. However, näıvely treating the predictive model as
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black-box may lead to inaccuracies in the generated plot. Often only observed

input values are used for sampling which leaves the prediction function for other

values undefined, even though those values might be of particular interest for

understanding the internals of the model. Furthermore, the interpolation between

those sample points may ignore inherent features of the prediction function. For

example, Ehrlinger [37] shows the usage of partial dependence plots via random

forest models. The prediction function for those models can only change between

thresholds appearing in the nodes of the trees. For all other values the prediction

remains constant. However, the interpolation between sample points used in the

examples is polynomial. This leads to the following misrepresentations of the

prediction function:

• Some sampled prediction values are not included in the interpolation.

• The interpolation is a curve where it should be a constant which alludes to

values that are impossible to achieve with the prediction function.

• Steps are interpolated as curves which gives the impression of a smooth ascent

of values when it should be a series of sudden jumps.

We overcome those inaccuracies by acknowledging inherent properties of the

prediction functions of our models. This is only possible by leveraging the internal

design of model algorithms and therefore, Prospector must more effectively sample

the range of the input features. For example, in decision tree or forest models,

where the predicted risk will not change between thresholds of the nodes of those

models’ trees Prospector utilizes the knowledge that the plot will be a step function

by only sampling values at the thresholds of the given feature to accurately compute
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the complete plot (see Figure 3.3). It does this by inspecting the decision rules in

the nodes of the model to retrieve those thresholds.

However some models, such as random forest models, produce a large number

of points where the outcome might change which leads to a cluttered plot that

impairs readability. One solution to this is to simplify the generated plot by

finding almost co-linear points and reducing them to the end-points. Such visual

optimizations support more comprehensible plots that are easier to read while still

being accurate representations. Other machine learning algorithms may not require

such optimizations.

Prospector also enhances partial dependence plots by taking into account the

context of the original data values. For example, certain features only make sense

as integer values (e.g., the number of times a laboratory test was performed) and it

does not make sense to show non-integer values in the plots. Such features can be

heuristically detected by inspecting the set of values in the original data set and

Prospector restricts those features to only have integer values as input. Similarly,

in the partial dependence plot, only integer values are computed. Furthermore,

for predictive models using step functions the plot is horizontally shifted by 0.5

so that jumps happen between values. This eases reading the actual value at the

integer points. Even though this improvement leads to a slight misrepresentation

of the prediction function for non-observable values the readability of the plot is

significantly improved to support user tasks. For non-integer data types, these

optimizations are not necessary.
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Figure 3.4: This illustration provides an explanation of how local inspection works.
On the top row are the patient’s original feature values and the corresponding
prediction. On the bottom three rows, users changed certain values of the patient,
highlighted in yellow, and such values impacted the prediction.

3.3.2 Local Inspection

Our second core contribution is leveraging our implementation of partial depen-

dence to support the user task of local inspection. Users can use Prospector to

inspect specific data points of interest and see how the models predict how they

behave. In addition, if the users are curious about how a particular data point’s

risk might change if it had different values, a user can explore this as well. The

idea of localized inspection is illustrated in Figure 3.4 using our running example

of Diabetes prediction. At the top, the original patient’s feature values are shown,

along with the patient’s original predicted low risk of having Diabetes. Suppose

the analyst was curious to see how the patient’s risk would change if his BMI

was increased to 35. Localized inspection allows users to interactively change this

value, and see the corresponding prediction. In order to streamline this kind of

exploration we fully compute the predicted risk for all values of BMI similar to

partial dependence. As seen in Figure 3.4 we do this for all features independently

yielding local partial dependence plots for each feature using a single input row.
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Figure 3.5: The same feature shown as line plot (top) and partial dependence bar
(middle). Color indicates the predicted risk for the outcome. The color mapping is
shown at the bottom.
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3.3.2.1 Partial Dependence Bars

In order to increase interactivity, encourage exploration, and display a larger

number of features at once, we use a novel visual encoding, partial dependence

bars, a color bar representation of a partial dependence plot, shown in Figure 3.5.

The horizontal axis of a partial dependence bar represents the range of values of a

feature, and the color at a given position represents the predicted risk for that value.

Color is mapped to a three-point color scale, where blue represents low risk, yellow

represents medium risk, and red represents high risk. As these bars are meant to

aid local inspection, the current feature value of the datapoint being inspected is

positioned along the horizontal axis and annotated as a circular label. Users can

drag this circular label left or right to inspect how changes in the feature value

affect the predicted risk as well as the local partial dependence of other features.

3.3.2.2 Local Feature Importance

The fourth novel contribution of our research is a technique to simplify the

exploration of the predicted risk space by automatically finding features where a

small change in value yields a significantly large change on the predicted risk.

While manipulating values of specific features allows users to test hypotheses

on how features of interest may impact the prediction, if users wish to simply

understand how to most impact the prediction, manipulating features one-by-one

to test impact is an inefficient process. Instead, Prospector can employ local feature

importance, a novel technique that computes the impact of a given feature on the

model according to the current values. This localized feature importance comes in

two different flavors: as a feature importance number and as actual suggestions for

value changes.
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A straight-forward way to define a localized importance of features is to look at

the range of possible predicted risks the feature can create starting from the given

data point. Formula (3.2) computes the local importance I of a given feature f for

the given feature vector p. It sums up the entirety of changes in outcomes for all

values v for feature f . The outcome changes are weighted by ω the likelihood of

changing the value from pf to v. p∗ is the modified feature vector where its value

for f is set to v and pred is the prediction function.

If (p) =

∫ ∞
−∞

[pred(p∗)− pred(p)] ω(v, pf ) dv (3.2)

with p∗f = v and p∗g = pg for g 6= f

ω(v, pf ) =
1

σf
√

2π
exp

(
−(v − pf )2

2σ2
f

)
In order for different features to be comparable, ω takes the distribution of

values in the input data into account. In features with a high spread, a larger

change is more likely than in a feature with a narrow value range. We model the

likelihood of the change using a normal distribution with the reference value pf

as mean and the standard deviation σf of the observed values of f as standard

deviation. Ordering the features according to this local importance yields features

that are likely to decrease the predicted risk first, then features that have a low

impact on the predicted risk, and finally features that are likely to increase the

predicted risk.

Instead of computing local feature importance for all possible changes, it is

more practically useful to compute the importance according to the most impactful

change for a feature. An impactful change is the smallest change needed to have

the largest change in the predicted outcome. Note that this is different from the
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slope of the function since an impactful change might be after a valley or ridge.

Again, in order to have comparable results, the distribution of values in the input

data is taken into account.

arg max
v

[s [pred(p∗)− pred(p)] ω(v, pf )] (3.3)

Formula (3.3) finds the most impactful change of a feature. s is either 1 or

−1 depending on whether to search for the largest increase or decrease. All other

variables are the same as in Formula (3.2). The changes yielding the highest impact

can be interpreted as suggestions for changing a data point.

3.3.2.3 Comparing Multiple Models

Prospector also supports plotting multiple models in the same plot. As the input

domain and the output range are the same across different machine learning models

on the same data, partial dependence plots can also be used to compare multiple

models as shown in Figure 3.6. This is useful for comparing the expressiveness of

models and seeing which models are possibly under- or over-fitting the input data.

3.3.3 Workflow

In order to support the workflow of clinical researchers, as described above in

the Motivation, Prospector ’s UI is organized into three main tabs: patient selection,

patient inspection, and partial dependence plots.
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Figure 3.6: Comparison of three machine learning models on the number of measured
BMI values. The two regression models (logistic regression in blue and regularized
logistic regression in green) can express only a single slope (downwards or upwards)
whereas the random forest in red can model the strong decrease in predicted risk
going from no BMI measures to one measure as well as the later increase again if a
patient has several BMI measures. The random forest is more expressive, but the
distribution of input values in the histogram below the plot hint the model might
be overfitting as most of the observed values are 2 or less.
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3.3.3.1 Patient Selection

The patient selection tab allows users to find patients they may want to inspect,

based on their ground truth (e.g., whether they actually had Diabetes) and their

predicted risk (e.g., assessed likelihood by the predictive model of having the

disease). Prospector provides a visual summary of the patient population by

providing a patient selection visualization. The visualization, as seen in Figure 3.7,

consists of two columns dividing the population according to their ground truth

(case patients being those actually diagnosed with Diabetes and control patients

being not). Each column is then separated into bins of predicted probabilities in

steps of 0.1 which can be clicked to select the group of patients fitting those criteria.

For instance, if a case patient was predicted with a low risk score, that patient

would appear in the top of the right column. If a bin is too small to provide a

clickable area, a box at the side of the column is displayed to allow choosing even

small populations. The selected population is then shown next to the visualization

with the individual prediction results shown for each entry.

In order to get more details about patients before selecting, users can hover

over a patient in the list and see a summary for the patient, as shown in Figure 3.8.

In addition to the predicted risk and the ground truth, the interface shows the

top 5 most impactful features, for both increasing and decreasing predicted risk,

according to the local feature importance described above. For each impactful

feature, the original data value is shown as well as the suggested change and what

the resulting predicted risk would be if such a change was made. This summary

provides a preview of how amenable a particular patient’s predicted risk is to

changing and which features are mostly responsible for their current predicted risk.
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3.3.3.2 Patient Inspection

After users select a patient of interest, the UI switches to the patient inspection

tab with the selected patient’s data loaded, as shown in Figure 3.9. All of the

features’ partial dependence bars are shown in a scrollable list, with the patient’s

feature values selected with circular labels. Users can drag the circular label to

change the value of any feature and see the predicted risk change in real-time. Users

can also select a feature and see the corresponding typical partial dependence plot

of the feature. In this plot the local partial dependence of the current patient is

shown as black curve and the global partial dependence of the whole population is

shown in gray. The partial dependence plot is also clickable and users can change

the feature value here as well, changing the black vertical line that, in this plot,

shows the current value.

Users can change the order of the partial dependence bars by using the buttons

at the top. In addition to sorting by the feature weight and relevance as determined

by the predictive model, users can also sort according to our local feature importance

and impactful changes as described above. If impactful changes are chosen as the

order, the suggested changes to each feature are indicated with a white circular

label in the partial dependence bar, shown on the bottom left of Figure 3.9.

Often after analysts have inspected a particular patient, they may wish to find

other patients similar to them to see how they react to the predictive model. If

users wish to find patients similar to the one they are inspecting, they can click

on the “Neighborhood” button and Prospector will automatically find the closest

patients to the current set of values using feature-wise Euclidean distance. This

similar set of patients are then used as the population in the patient selection tab

that users can navigate.
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3.3.3.3 Partial Dependence Plots

If users wish to browse the global partial dependence plots of a feature of

interest, they can navigate to the third tab. Users can view multiple models at

once by using a combo-box at the top of the user interface to select the models

they wish to view in the plot. Each selected model is assigned a unique color using

a quantitative color scale, and a color-coded key is displayed beneath the plot. If

more than one model is selected, the red “Avg. Score” helper line is not shown.

Users can also filter the global population to a subset population of interest by

using a predicted probability bin or the “Neighborhood” of a patient in the patient

selection tab. This alters the plot accordingly allowing for a more focused analysis

for e.g., mispredicted patients, outliers, or patient neighborhoods.

3.4 Case Study: Predicting Diabetes

In order to evaluate the utility of Prospector , we chose to conduct a case study

utilizing a team of real data scientists building their own predictive models on their

own real-world datasets to demonstrate its effectiveness at reaching insights in

practice. There is a growing belief in the visualization community that traditional

evaluation metrics (e.g., measuring task time completion or number of errors)

are often insufficient to evaluate visualization systems [15, 97, 106]. Using the

evaluation methodology developed by Perer and Shneiderman [94], we conducted a

4-month long-term case study with a team of five data scientists interested in using

predictive modeling on a longitudinal database of electronic medical records. The

research team is interested in building a predictive model to predict if a patient

is at risk of developing Diabetes using a database of 4,000 patients from a major
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Figure 3.7: The interface for selecting a patient. The left side shows the distribution
of patients within different ranges of predicted risk. The columns indicate the
ground truth. On the right side a list shows the patients of the currently selected
range.
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Figure 3.8: The summary of one patient. The header line indicates the patient id,
the ground truth, and the predicted risk. For both decreasing and increasing the
predicted risk the top 5 most impactful features are shown. Each feature shows its
current value and the suggested change with the highest impact along with how
the predicted risk would change.

hospital in the United States. Due to sensitive data agreements, this team wished

to remain anonymous.

The initial phase of the case study involved understanding the data scientists’

current tools and needs. They presented their typical results after building predictive

models, sharing stories of success when their stakeholders were pleased, as well as

examples of less successful results when their stakeholders demanded answers they

couldn’t provide with existing tools. Their use cases and experiences shaped the

design and requirements of the tool.

After the tool was developed, there were bi-weekly meetings with the data science

team in which we discussed the current interface and identified shortcomings of

the interface, necessary UI enhancements, and components that were not worth

developing further. Some of the elements originally proposed turned out not to

be useful, such as overlaying distributions of risk in the partial dependence plots
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Figure 3.9: The user interface of Prospector is shown at the top. The bottom left
shows suggestions on what changes (white circles) would decrease the predicted
risk the most. The bottom right shows how the color plots change due to changing
a value (namely changing the BMI value from 0 to 1). Fully white circles show the
original value of the given patient.
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or using ICE plots [42]. However, focusing the meetings on examining the team’s

predictive models together using Prospector allowed us to determine which elements

helped improve both the models and their comprehension of the models.

3.4.1 Understanding Model Classes

Initially, the data scientists were unsure which type of predictive models to build.

Although they had used simpler models in the past, such as decision trees and

logistic regression, they were eager to use random forest models due the promise

of higher accuracy but were worried about how interpretable the results would

be. After building models using both logistic regression and random forests, they

were curious to use partial dependence plots to understand the trade-offs of both

approaches. An example of such trade-offs can be seen in Figure 3.6, which is a

partial dependence plot of two logistic regression models and one random forest.

Interestingly, for this feature (which refers to the number of times patients got their

BMI recorded), the model types disagree substantially for higher values in the plot.

This is surprising since the inspected feature is most important for all models and

all models perform equally well using standard statistics like accuracy or AUC.

While all three models have a decrease in average predicted risk when the

count goes from 0 to 2, the logistic regression models continue to trend downward.

However, the random forest model (in red), illustrates the predictive risk increases

as the count gets higher than two. The data scientists were surprised to learn how

differently the model classes treated this feature, but using the tool, they were

able to devise a two-fold explanation. On one hand, logistic regression models are

not expressive enough to model the late increase after the initial drop, as logistic

regression models are bound by a single curve. On the other hand, most of the
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observed instances of the feature are zero, one, and two while the higher values

occur extremely rare, as the histogram below the plot clearly illustrates. This led

the data scientist team to question whether to model everything as precisely as

possible or using a simpler model for the sake of generality.

3.4.2 Unexpected Effects of Data Imputation

Due to limitations of their database, many of the patients were missing Glucose

lab test results. During the feature construction phase, the team made a decision

that in order to work around the missing values, each patient who did not have

a value would be given the average observed value of all other patients. This

imputation technique is popular among predictive modelers, as simply removing all

patients without such data would make the data quite small. However, once the

data science team began to explore the Glucose feature in the tool, as shown in

Figure 3.3, they began to realize the dramatic effects their imputation strategy can

have. Due to the imputation, patients that are either cases or controls often have

the same lab test values which increases the noise of the predicted risk. The partial

dependence plot illustrates that, as noise increases, the predicted probability gets

closer to the population average leading to a valley in the machine learning model.

Exploring this feature in Prospector suggested that a better strategy for handling

missing values would be needed to overcome this problem.

3.4.3 The Need for Localized Inspection

Discussions in bi-weekly interviews also led to the development of the localized

inspection of patients which aims to answer the following questions:
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1. What impact does a feature have on an actual patient?

2. Does the model behave correctly on a case-to-case basis?

3. What are the most important features for a given patient?

4. Why are certain patients not being accurately predicted?

5. Can we identify high impact actionable features?

The last question about identifying actionable features was of particular impor-

tance to the data science team. They were interested to know if the model could be

used to learn features that could be acted upon by the patients or their doctors to

reduce the risk of Diabetes. However, the data science team were disappointed to

learn, via Prospector , that many of the highest ranking features were not actionable.

For instance, some of the most predictive features for a high risk of Diabetes

involved having a high count of the number of lab tests. Informing patients to

get fewer lab tests would likely not correlate to lower risk of Diabetes. Instead,

these lab test counts were likely a proxy for other features that correlated to more

complicated or more sickly patients seeing their doctors more regularly and thus

getting more lab tests. Other demographic features that were highly predictive, like

age, simply have no intervention as well. The data science team then reconsidered

which features should be a part of the predictive model, by creating features that

are actionable and omitting others. Of course, the model cannot know this by itself

– no matter what sophisticated feature selection algorithms are used – so the access

Prospector provides is critical for this process.
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3.4.4 Impact on Data Scientists’ Workflow

In addition to learning new insights about their predictive models, the tool also

impacted the team’s workflow. Prior to Prospector , after each new predictive model

was built, a data scientist would manually generate a set of reports describing the

model. Typically, this would involve exporting a list of the model’s top features

and their weights, and generating a bar chart for the other team members to

review. They would present these bar chart summaries during review meetings and

discuss if the model seemed sensible enough. If they believe the list of features

made sense, they would then present this chart to their stakeholders. If it didn’t,

they would brainstorm how to improve the predictive model (such as changing the

classification or feature selection algorithms) and then repeat this process. While

this manual approach led to the deployment of predictive models in the past, many

iterations were required and understanding impactful values of features were rarely

considered.

Once Prospector was integrated into their workflow, many of these shortcomings

were overcome. No longer did a data scientist need to generate a set of manual

reports. Instead, the predictive model can be loaded into the tool directly. Since

the tool is interactive, it also allows the team to ask questions that may have not

been considered when static charts were created. The tool also allowed them to

ask questions beyond the top features that contributed to the models. They could

ask more patient-centric questions such as “Why is this patient not being classified

correctly?” by drilling down to incorrectly predicted patients and exploring the

most impactful features for them. Beyond exploration, Prospector was also used

to communicate models to the stakeholders, which allowed stakeholders to ask

questions and see the results in real-time. This rapid feedback helped gain support
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for deploying predictive models in future projects. As a result of these successes,

Prospector is now a part of their predictive modeling workflow and is used for other

work than predicting the onset of Diabetes.

3.5 Conclusion and Discussion

In this paper, we demonstrated how the design and implementation of an

interactive visual analytics system, Prospector , can help data scientists assess

the interpretability and actionable insights of trained predictive models. Prospec-

tor accomplishes this by supporting interactive partial dependence diagnostics

for understanding how features affect the prediction overall by featuring novel

visual representations, sampling strategies, and support for comparing multiple

models. Furthermore, Prospector supports localized inspection so data scientists

can understand how and why specific instances are predicted as they are. With

support to interactively tweak feature values and see how the prediction responds,

as well as finding the most impactful features using a novel local feature importance

metric, data scientists can interact with models on a deeper level than possible

with common tools. Finally, we presented a case study, in the spirit of #chi4good,

which involved a team of data scientists using Prospector to improve predictive

models for detecting the onset of Diabetes. Their extended use of the tool led to

better predictive models, as well as better communication of their models to their

stakeholders.

Despite the novel features of Prospector and its successful case study, there is

still much future work to continue to give users full comprehension of predictive

models. Prospector relies on partial dependence for one input feature at a time, but
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this approach relies on the orthogonality of input features. However, in real-world

data, this is not often the case, as features may be correlated. Prospector can only

model changes along one axis at a time as it cannot take correlations or influences

between features into account. We plan to address this limitation in future work by

modeling valid sets of instances and visualizing how they react to changes in one or

more features. Another limitation is that Prospector was built to view predictive

models after they had been built using users’ own predictive modeling pipeline of

choice. However, this flexibility limits the ability for users to directly impact their

predictive models based on insights reached during exploration. Also, Prospector

can only handle single-class predictions, but we plan to extend this functionality

to multi-class predictions in the future. Our future work also intends to integrate

Prospector more directly into the predictive modeling pipeline so users can directly

modify features for feature construction and feature selection and see how their

models improve in a single user interface. Despite these limitations, providing users

with advanced visual tools to inspect black-boxes of machine learning shows great

promise and helps users comprehend and retain control of their predictive models

without sacrificing accuracy.

3.6 General Discussion

Prospector [69] explored model dependent feature importances that allow for a

fine grained value influence analysis. From that we derived local feature importances

that apply to single instances and give insights into the decision making process of

the machine learning model in the given case. We showed that this method can be

used to verify strengths and understand short-comings of models. However, the
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method focuses on individual features preventing insights related to combinations

of features. Furthermore, the user has to choose between a heavily aggregated

global view of the model’s decision making or an individual instance-level view

which is too fine grained to be useful for models with many instances. To overcome

those problems we developed the workflow presented in the next Chapter.
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Chapter 4

Explainer

Human-in-the-loop data analysis applications necessitate greater trans-

parency in machine learning models for experts to understand and trust

their decisions. To this end, we propose a visual analytics workflow to

help data scientists and domain experts explore, diagnose, and under-

stand the decisions made by a binary classifier. The approach leverages

“instance-level explanations”, measures of local feature relevance that

explain single instances, and uses them to build a set of visual represen-

tations that guide the users in their investigation. The workflow is based

on three main visual representations and steps: one based on aggregate

statistics to see how data distributes across correct / incorrect decisions;

one based on explanations to understand which features are used to

make these decisions; and one based on raw data, to derive insights on

potential root causes for the observed patterns. The workflow is derived

from a long-term collaboration with a group of machine learning and

healthcare professionals who used our method to make sense of machine
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learning models they developed. The case study from this collaboration

demonstrates that the proposed workflow helps experts derive useful

knowledge about the model and the phenomena it describes, thus experts

can generate useful hypotheses on how a model can be improved.

Summary:

Research Question:

How can black-box explanations help diagnose model errors?

Key Findings:

• The Model Diagnostic workflow enables a scalable un-

derstanding of the local decision making of a predictor.

• Aggregation of instance-level explanations allows for

semantic validation of the input data.

• A model can only perform as well as its input data.

• Gaining insights about the limitations of a model in

turn helps with feature engineering on the input data.

Josua Krause, Aritra Dasgupta, Enrico Bertini

In this paper we propose an interactive workflow and a visual user interface to

help data scientists and domain experts diagnose and validate binary classifiers.

The approach we suggest is based on a mix of automated and interactive methods

that guide the user towards understanding what decisions a model makes, which

ones are correct or incorrect, and potential strategies to improve them.

Being able to explore the decisions a model makes and identifying potential

issues is crucial in application areas where experts need to get a sense of how the
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model works and build trust in its decisions. While common practice in much of

the machine learning endeavors is to focus on model accuracy, many researchers

have voiced the need for more transparency when the application domain requires

it [12, 25, 40, 80, 82, 123]. A recent DARPA (Defense Advanced Research Projects

Agency) program called “Explainable AI (XAI)”, for example, calls for more

research in this area and declares, as the main motivation for the program that

“the effectiveness of these systems is limited by the machines current inability to

explain their decisions and actions to human users” and that “it is essential to

understand, appropriately trust, and effectively manage an emerging generation of

artificially intelligent machine partners”.

In addition to evaluating a model in terms of accuracy, we propose the idea

of semantic validation, the need for domain experts to verify that the decisions

a model makes are plausible when compared against their mental models of the

problem. For instance, in healthcare settings, medical doctors often want to see

examples of recommendations the model provides and need to gain trust in it before

they feel comfortable with deploying it in real-world settings. Such reservations in

deploying models without having an opportunity to manually verify what decisions

they make are well justified as it is entirely possible for a model to achieve high

accuracy and yet provide dramatically erroneous recommendations [25].

Another important factor to consider is that domain experts and data scientists

are often working in collaboration to solve a particular problem (or they are actually

the same person covering both roles). Being able to manually inspect a model

can give them an opportunity to generate useful insights on how a model can be

improved. While commonly used aggregate statistics such as area under the curve

(AUC) give a sense of the overall accuracy of the model, and can be used as a
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parameter to compare between different models, they do not provide insights on

how or why a model fails to capture important phenomena accurately.

Some existing methods do provide more transparency and useful information for

enabling better understanding and diagnostic purposes, but they tend to be limited

and specific to a particular kind of model. For example, logistic regression and

decisions trees are commonly regarded as more interpretable models thanks to their

ability to provide information on feature weights and / or specific decisions the

model makes (decision trees) [40]. These solutions are however limited by a number

of factors. Since they are specific to the selected method, they are hard to generalize

and cannot be applied transparently to other types of models. Furthermore, they

only provide a limited picture of what decisions the model makes. Feature weights

provide a highly coarse summary of how relevant features are globally, but they do

not provide information on how the model makes decisions locally, for a selected

set of instances. Even more transparent methods, like decision trees, tend to grow

very large and are not easy to parse visually, especially for data sets with a high

number of dimensions / features.

To address these issues we propose a workflow, aimed at machine learning

experts and data scientists, based on instance-level explanations, computational

methods to derive a description of how a model makes decisions on single data

items, without having access to the internal logic of the model (i.e., using the model

as a black box ). These explanations are then aggregated and used as input to a

visualization system that enables the browsing of model decisions and assessment

of their quality.

The work we describe in the paper stems from a one year collaboration with

a group of domain and machine learning experts from the NYU Langone Medical



102

Capture & 
Process Data

Train ML 
Model

Model Building
Model Diagnostics

Change Data & Features and / or Model Parameters & Algorithm 

Item-Level InspectorExplanation ExplorerStatistical Summary View

Diagnostic 
Insights

What is the overall
accuracy of the model?

What are the main decisions?
How accurate are the decisions?

What is needed to 
improve the data / model?

Figure 4.1: Our proposed Model Diagnostics workflow extends the conventional
Model Building workflow in machine learning for enabling domain experts to reason
about the semantic validity of the decisions made by any model through multiple
linked visualizations of statistical performance summaries, explanations, and item-
level distribution of features. By iterating through explanation-level summaries
and item-level details, experts are able to generate diagnostic insights about the
quality of both the data and the model. This ultimately helps to improve data
acquisition and model generation processes belonging to the original workflow.

Center. In our collaboration, we worked together to make sense of models built

to understand how patients are handled in the hospital and to figure out whether

important outcomes of interest can be predicted correctly. This resulted in the

development of an interactive model diagnostic workflow using visual explanations

of model behavior that is the main contribution of this work. The rest of the

paper is organized as follows. We present related work in the next section. We

provide an overview of model diagnostics goals and of the proposed workflow in

Section 4.2. We then describe in detail the instance-level explanation algorithm we

use in Section 4.3 and the interfaces we built in Section 4.4. Section 4.5 reports on a

use case we built to show how the workflow can help perform useful and actionable

model diagnostics. Section 4.6 discusses the results and provides a number of

reflections and lessons we have learned from this collaborative exercise.
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4.1 Related Work

In the following, we discuss model explanations and visual analytics techniques

used for interacting with classification models.

4.1.1 Model Explanations: Why and How

Explanations of behavior of autonomous systems [75] or computational mod-

els [35] can lead to a high degree of human-machine trust. In machine learning,

model explanations are beginning to be used in human-in-the-loop data analysis

applications for communicating information about model behavior and predictions.

While there are some studies [113] that show that explanations can lead to over-

reliance on the system, generally it has been posited that model explanations lead

to a high degree of human interpretability and trust [76]. Similar to the latter, our

goal in this work was to develop a visual analytic workflow for model explanations

and to work closely with data scientists and domain experts to understand how

that could lead them to understand and trust model behavior.

In the literature, we find two contrasting purposes behind generating model

explanations. The first approach is embedded within the interactive machine

learning pipeline and helps end users in refining a model’s predictions by interacting

with the model structure. This helps users to build a mental model about the

model reasoning process [71]. Through the EluciDebug approach, Kulesza et al. lay

out a set of principles for the process of explanatory debugging using a Näıve Bayes

classifier model. Although the principles are generally applicable, the explanation

technique is specifically applicable only to a particular model. Furthermore, additive

models enable intuitive explanations through feature contributions that allow
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both to visualize the decision making process for single instances [99] and feature

contributions on a population level [25]. However, this solution requires the use of

an additive model and as such it is not generally applicable.

To overcome this limitation, a second approach for explanation generation is to

treat the machine learning model as a black box, bypassing the model structure,

while communicating the input-output relationships and their relevance to a model’s

decisions to an analyst, e.g., inferring rules from a neural network [34], or generating

explanations [69, 102]. We adopt this black-box approach in our workflow for

benefiting domain experts, who are not trained in machine learning, and also

for providing data scientists with a model-agnostic and generalizable diagnostic

interface for inspecting model quality. In previous work, local explanations have

been used to diagnose how models make decisions for single instances of a data

set [66, 69, 102]. In contrast, we provide an interactive workflow where users

can explore aggregated representations of explanations and better understand the

context of model decisions by iterating across explanation-level and instance-level

visual summaries of prediction quality.

4.1.2 Human-in-the-Loop Inspection of Classifiers

Researchers have recently demonstrated how human interventions can help

in greater accuracy in construction of classifiers, when compared with a purely

automated approach [115]. In this work, Tam et al. used information theory to

show how soft knowledge of model developers can be encoded in decision trees, and

they advocate a tighter integration between human and machine-centric processes

for model development. The goals for integrating visual analytic techniques and

classification methods fall broadly into three categories, as proposed by Liu et al. [78]:

i) model understanding, ii) model diagnosis, and iii) model refinement. Our proposed
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diagnostic workflow (Figure 4.1) encompasses the goals of understanding model

behavior and diagnosing the model decision space for enabling data scientists and

domain experts to generate insights about potential inadequacies in the data and

in the model quality. The refinement step is an obvious action as a result of these

insights, but is outside the scope of our work.

Analyzing summary statistics of model performance through the lens of visualiza-

tion techniques is the most common approach for finding matches and mismatches

between model predictions and ground truth data. To this end, ModelTracker [5]

provides a unified interface for error detection and debugging for binary classifiers

showing item-wise distributions of prediction scores. Bilal et al. propose the

confusion wheel visualization [2] and other linked views to show probabilities of

items belonging to different classes for multi-class classifiers. Squares [100] provides

a single, unified visualization of performance metrics and easy accessibility to the

data for debugging multi-class classifiers. For enhancing the interpretability of

classifier predictions, Cortez and Embrechts [32] use a sensitivity analysis approach

for letting users understand the effects of variation of input values on model out-

puts. While these methods are able to diagnose performance issues at the level

of a single item [2, 5, 100] or single features [32], they lack a holistic summary

of the entire decision space that exposes associations among subsets of items and

features, and communicates the reasons behind the model decisions. Through

an explanation-based approach, we can let analysts explore these associations for

a large, high-dimensional data set, drill-down to individual items, and diagnose

potential problems with respect to both global and local decisions. This leads to

actionable insights about the limits to which model quality can be improved, and

ultimately, hints about how to improve the data.



106

4.2 Model Diagnostics

We use the term Model Diagnostics to indicate the steps necessary for a domain

expert or a model developer to semantically validate the decisions made by a model

using their domain knowledge. In this section we outline the different goals for

a user when using a model diagnostic interface and provide an overview of the

implementation of the resulting workflow (Figure 4.1). The workflow was derived

through a long term collaboration among visual analytic researchers and model

developers and domain experts in the medical field, specifically in the application

scenario of hospital visits. The over-arching goal in this scenario is to use predictive

modeling for reducing patient wait time and optimizing the hospital resources

needed for admitted patients.

4.2.1 User Goals

In the course of our interactions with domain and machine learning experts

and analyzing a variety of model building problems, we realized that the model

diagnostics problem can be decomposed into the following main goals; which we

express as a set of questions as shown in Figure 4.1.

G1: What is the overall accuracy of the model? In this step, experts need to get

an overview of the distribution of prediction scores across the data items, derive an

understanding about the uncertainty associated with predictions of certain items,

and generally where the predictions are correct or incorrect.

G2: What are the main decisions the model makes? A trained classifier creates

a decision space that maps a (potentially high-dimensional) input space into the

output space defined by the two labels true and false. Understanding what these
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decisions are and how frequently they are made is a crucial piece of knowledge

domain experts want to draw from the classifier. For instance, in the healthcare

scenario we explore in this paper it is crucial for domain experts to know that

the vast majority of decisions the classifier makes are based on a small set of

drugs (features). They also want to ensure that different sets of drugs are used

by the classifier to make decisions about different sets of patients (e.g., a group of

patients is characterized by Ondansetron and Sodium Chloride, whereas another is

characterized by antibiotic drugs).

G3: How accurate are the decisions the model makes? Together with knowing

what decisions the model makes, it is crucial to also know how accurate these

decisions are. Using the same example as above, it is not sufficient to know that

the model classifies a group of patients according to the drugs they received, but

also how often this decisions are correct or incorrect.

G4: How can one change the data or the model to improve its decisions?

Understanding decisions and assessing their accuracy is relatively useful, but the

ultimate goal for a model developer is to actually gain actionable insights on how

the model can be improved. Some of the insights experts want to derive include:

whether the model parameters should be tuned or a better set of features should

be derived.

In this work we do not provide specific support for the actual parameter tuning

or data processing steps necessary to improve the model. The black-box nature of

our approach is illustrated in Figure 4.1, which shows that the model diagnostic

workflow is an extension of (and not a part of) the existing model building workflows

that data scientists follow as part of their routine. Modelers have specific ways

and tools to perform these steps and intervening on their established practices is
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out of the scope of this work. Rather, in this work we focus on providing support

for the diagnostic part experts may want to execute at the end of each modeling

round and which is currently not well supported by existing tools and practices.

The diagnostic insights produced by our workflow provides hints about whether the

input data or the model structure needs to be changed for improving the prediction

quality.

4.2.2 Workflow

The workflow we propose results from two pre-processing operations: explanation

generation and visual mapping.

Explanation generation takes as an input a data set and a trained binary classifier

and creates for each instance in the data set an explanation. An explanation is

a description of the logic (or rule) the classifier uses to assign a given label to

the instance. For this purpose, we leverage a method developed by Martens and

Provost [82], which computes, for a given instance which features need to be

“removed” in order to change the classification outcome. For instance, in a text

classification problem, an explanation for a document consists of the words that

need to be removed in order to change the label originally assigned by the classifier.

In Section 4.3 we describe in more detail how the explanation method works.

Visual mapping takes as an input the data set and the set of explanations, and

builds a set of interactive visualizations (Figure 4.1) that support the user goals

we outlined above. The interactive workflow revolves around three main linked

interfaces; each one supporting the analysis of model decisions at different levels of

granularity and addressing the user goals.

Outcome-level. The first step focuses on overall accuracy of the model, using
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a representation similar to a confusion matrix. The main goal of this step is to

get a sense of how data distributes across the prediction score computed by the

classifier (typically a score between [0, 1]), and the four possible outcomes: true or

false positive and true or false negative. By visualizing how data distributes across

the four possible outcomes the user can gain a sense of how accurate the model

is (G1) and whether errors cluster around particular sets of scores.

Feature-level. The second step uses the computed explanations to generate an

overview of decisions made by the classifier and their accuracy. Each explanation

is described by the set of features it uses to explain an instance and, as such, it

provides a description of how the model makes its decisions. In this step, we group

together all the explanations (and thus the instances) that contain the same set of

features, compute accuracy statistics on top of them, and use these groups as a

visual interactive summary of the decisions the model makes. By visualizing the

explanations and their accuracy the user can get a sense of what are the major

decisions the model makes and how accurate they are (G2, G3).

Instance-level. The third step focuses on the analysis of a single user-selected

explanation and the instances it explains. Once an interesting explanation has

been found in the previous step, it is often useful and necessary to drill-down to

the individual instances to observe how the data items contained in an explanation

distributes in the original data space. Being able to observe their actual data values

and the decisions the model enables experts in formulating hypotheses about why

the classifier fails to make correct decisions with some instances. In other words,

when it is possible to visually compare the data values of instances that have the

same explanation but different outcomes, users can draw inferences on the root

cause of the diverging outcomes. Therefore, by visualizing single instances the
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user can reason on how the model makes decisions and derive potentially useful

hypotheses about how they can be improved (G4).

These three steps are linked in a sequence by user-driven filtering mechanisms.

The user can select specific sets of values at the outcome-level and visualize them

at the features-level. While observing the main set of decisions at the feature-level,

she or he can select specific explanations and inspect individual instances in the

instance-level interface.

It is important to stress the key role explanations play in the workflow. By

computing the explanations and computing statistics on top of them we can

effectively provide a description of the main set of decisions the model makes

without having access to the internal logic of the model. The relevant aspect of

explanations is that they compute a compact description of which features the

model uses to make local decisions for a subset of instances. For example, in the

medical data analysis explored in this work, where each patient is described by the

medications he or she received (features) and the classifier predicts whether the

patient will be admitted or not, an explanation can identify a group of patients

characterized by a small set of medications; that is, the medications the classifier

uses to make its prediction.

4.3 Explanation Method

Using explanations, we intend to group data items from the perspective of

the machine learning model being analyzed. In order to do so without relying

on a particular model, that is, treating the model as black box, we can estimate

which features were involved in its decision making process. In our initial approach,
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we had explored alternative methods for grouping the data by looking only at

prediction scores of the model [67]. However, we realized that those methods

mostly reflect the intrinsic structures of the data set instead of the decision making

process of the model. Therefore, in this work we build explanations by finding the

minimal amount of change necessary to change the prediction of the analyzed model,

specifically, a binary classifier. Also, contrary to our previous approach of using

explanations to detect only the commonly used features by a model [116], here we

focus on explanations as a way for experts to diagnose correct or problematic model

behavior and address the goals G1, G2, and G3, that were outlined in Section 4.2.

Explanations are created using a trained model by creating synthetic input

values derived from observed data items revealing this input-output relationship.

The set of changes to the values that swayed the outcome of the prediction is then

called explanation e for the given original data item:

min
e

L(v − e) 6= L(v)

where L is the label function with “positive” or “negative” as result and v is the

data item to be explained. In order to compute e, the prediction function P of the

classifier is used with a threshold t:

L(v) = P (v) > t

The output of P , the prediction score, is a number between 0 and 1 indicating the

confidence of a classifier in the predicted outcome. The threshold t is chosen to

yield the most correctly predicted items on the training data.

Prospector [69] and LIME [102] both propose algorithms that can be used to
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create explanations. The metric used for minimizing e depends on the explanation

technique. Prospector assumes feature independence and thus minimizes e by

combining one-dimensional impactful changes of the prediction score. LIME on the

other hand creates a local new simpler model by sampling the neighborhood of the

analyzed data item and extracts e from this transformed local space. Those two

methods aim to approximate minimal explanations in real valued high-dimensional

input data spaces.

In our case we are dealing with high-dimensional binary input data. For most

applications, like text analysis or movie recommendation, binary input data is

sparse, i.e., almost all feature values are 0 instead of 1. Therefore, binary data can

also be interpreted as a bag of features. That is, a data item can be treated as set

of features whose value is 1.

Martens and Provost [83] provide an algorithm for computing minimal explana-

tions for binary input data. As Prospector and LIME only generate approximate

explanations for data items we adopt and extend this method instead. The method

allows for only removing features from the bag of features. This restriction comes

from the observation that allowing additions to the bag of features can “tone out”

the original item by adding unrelated features with high impact on the prediction

score.

The algorithm to generate explanations using this method consists of successively

removing features from the bag of features until the prediction outcome changes.

The order of the removal is determined by the largest change in prediction score

when removing a feature. The set of features that are removed from the bag of

features in order to change the outcome of the prediction is then called an explanation

of the original data item.
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One problem with the original algorithm is that it contains a series of conditions

that make it give up on explaining some of the instances when these conditions

are met. In our case however we want to be able to provide a full picture of the

data set and as a consequence we want to create an explanation for every instance

provided in the data. For this purpose we decided to introduce a few modifications

to the original algorithm:

• The original algorithm enforces a maximum length of explanations and

declares an item as unexplainable if it fails to find an explanation that is

shorter than the limit. In our implementation we removed this restriction. The

main consequence of this modification is that sometimes the algorithm may

produce explanations that are very long and unintelligible. Those explanations

however are interesting because they can help us detect and visualize edge

cases which may reveal surprising information. In addition, having many

long explanations that explain only a few data items can be an indicator

of a highly complex model with few similar instances or that the model is

overfitting as it is trying to memorize individual labels.

• The algorithm can run into plateaus where removing any feature does not

change the prediction score. The original algorithm gives up in this case. We

circumvent this problem using the following two-step strategy: in this case

we select a feature at random and let the algorithm work as usual. Once an

explanation has been computed, we follow-up with a “clean-up” step removing

features that do not contribute to a change of the prediction in the end. This

extra-step can be very computationally expensive if the input data is not

sparse, however, it is necessary to ensure that the resulting explanation is

minimal.



114

• The original algorithm skips data items whose prediction outcome never

changes. As we use explanations as estimate of which features were involved

in the decision making process of the model we assign the explanation of

those cases to be the original data item. That is, all features present in the

original item make up the explanation as all of them were necessary for the

model to compute the predicted label.

The explanation algorithm can take several hours to compute even for small data

sets depending on the sparseness of the data. This requires the generation to be

performed offline before analyzing a model. In order to shorten the computation

time we utilized caching of partial explanation results in order to reduce the number

of queries to the machine learning model.

4.4 Visual Interface

Our proposed user interface1 consists of three different panels, each corresponding

to the different goals of our proposed workflow that we described in Section 4.2.

By interacting with each panel and navigating across these panels, experts can

diagnose different aspects of model behavior.

In the visualizations that are a part of our interface, the colors orange and blue

are used to show negative and positive prediction quantities. A hatching pattern is

used for quantities where those predictions are incorrect according to the ground

truth of the data. In this section, we describe each panel according to the order

of the workflow: Statistical Summary View of the machine learning model, the

Explanation Explorer, and the Item Level Inspector.

1https://github.com/nyuvis/explanation explorer

https://github.com/nyuvis/explanation_explorer
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Figure 4.2: The Statistical Summary View. (A) Histograms showing the
distribution of prediction scores. The direction of the bars indicates the ground
truth and their position relative to the threshold line (at 0.531) indicates the
predicted label. (B) The confusion matrix shows the number of correct and
incorrect predictions. (C) The ROC curve shows the prediction quality.

4.4.1 Statistical Summary View

The purpose of this panel (Figure 4.2) is to address G1 by providing a quick

summary of the performance of a trained model that can help detect shortcomings

before proceeding with further analyses of the model. The view consists of multiple

components.

The histograms (Figure 4.2A) show the distribution of data items over prediction

scores. The chosen threshold is shown as vertical line. Bars going up indicate the

number of predicted positive labels while bars going down show predicted negative

labels as emphasized by the color of the bars. The prediction score goes from 1 to 0

from left to right to match the order of cells in the confusion matrix. Likewise, bars

at the bottom, left of the threshold, and at the top, right of the threshold, depict
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on Log Scale

Features needed to be removed
to change the predicted label of items

Controls & Filters
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Figure 4.3: In the Explanation Explorer each row represents a group of data
items explained by a set of features (E). An indicator is shown for explanations
longer than 3 features. Column (F) shows the distribution of true / false positive
/ negative data items within the group. Colors show the predicted label (“blue”
for positive and “orange” for negative) and a hatching pattern indicates incorrect
predictions. Column (G) shows the number of items captured by the explanation.
The bars are relative to the size of the largest explanation. Column (H) shows
the odds ratio of the group on a logarithmic scale. Whiskers show the confidence
interval. The arrows on the right (I) navigate to the Item Level Inspector focusing
on the given explanation. The controls of the Explanation Explorer are shown
on the left. The first entry of the list of filtered data items (B) represents the
full dataset and following entries show sizes after filter steps are applied. The “+”
creates a new filter according to the current selection of explanations. Explanations
can be selected satisfying a condition (C) or by searching for features in the search
box (A). The sort order of explanations is defined by the list at the bottom (D).
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incorrectly predicted data items as indicated by their hatching pattern. Selecting

a particular bar lets the user navigate to the Explanation Explorer for inspecting

items that fall in the given range of prediction scores.

The confusion matrix (Figure 4.2B) splits data items by their ground truth

(vertical) and the predicted label (horizontal). The edge of the matrix shows the

sums of its columns and rows. The predicted label depends on a threshold that

divides prediction scores into positive and negative. We choose the threshold to

minimize incorrect predictions (i.e., the threshold with the smallest number of false

positive and false negative predictions).

The ROC curve on the testing data (Figure 4.2C) shows the false positive

rate ( FP
FP+TN

) plotted against the true positive rate ( TP
TP+FN

). The thresholds for

those values are implicit in the plot. However, the position for the chosen optimal

threshold (as described above) is indicated in the plot via two crossing lines.

The area under the ROC curve (AUC) is also shown for both the testing and

the training data set. An AUC of 1 indicates optimal prediction while an AUC of

0.5 equals classification by flipping a coin. Comparing the training AUC to the test

AUC is a good estimator of how well the given model generalizes the training data.

A very high training AUC with a much lower test AUC indicates overfitting of the

training data. In addition to the AUC the accuracy of the model with the chosen

threshold is also shown.

4.4.2 Explanation Explorer

The second panel, the Explanation Explorer (Figure 4.3), addresses G2 and G3

by encoding a list of explanations based on the method we described in Section 4.3.

The explanations are representative of the main model decisions and the associated
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statistics about explained items provide insight into the accuracy of those decisions.

Each row in the list represents one subgroup of data items explained using a

single explanation set. The rows can be filtered based on different criteria for user

exploration which we describe below. The row on top shows information for the

full set of current data items.

The first column of the list shows this explanation (Figure 4.3E). In order to

make this information quickly readable we only show the first three features of an

explanation and indicate if there are more features present by adding a marker,

showing the number of remaining features, on the right side of the feature names.

Furthermore, the feature descriptions are abbreviated in a way that each feature

takes up the same amount of space. With this the complexity of an explanation i.e.,

the number of features used in an explanation, can be seen at a glance. The full

description of all features can be seen in the tooltip when hovering over the features.

The design decision to show only up to three features stems from the fact that only

short explanations can be easily interpreted and having many long explanations is

usually a sign of problems with the classifier, like overfitting, and in that case, the

actual features involved are less interesting.

The next column shows the relative distribution of predicted labels of the

explained subset of data items as stacked bars (Figure 4.3F). The colors blue and

orange are used to indicate a positive and negative prediction respectively while a

hatching pattern indicates incorrect predictions. The actual numbers are shown in

the bars as well.

The bars in the third column show the size of the subset relative to the largest

explanation subset of the current data items (Figure 4.3G). The bars are split

according to the distribution of the ground truth labels. Two shades of gray are
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used to avoid confusion with distributions of predicted labels. The total number

of items in the subset along with the number of positive items according to the

ground truth is written in the column as well.

The fourth column shows the odds ratio of the subset on a logarithmic scale

(Figure 4.3H). Whiskers indicate its confidence interval. Odds ratio is a popular

metric for determining effectiveness in evidence based medicine and clinical trials.

It is computed by comparing the subset explained by the given explanation with

the full set of current data items. This way we can detect whether an explanation

describes a consistent subset of instances or if the subset appears like a random

sample. With this the odds ratio is:

pe/ne

pt/nt

where pe and ne is the ratio of positive and negative items respectively in the

explanation subset and pt and nt is the ratio of those items in the remaining data

set. The confidence interval of the odds ratio is then computed as:

exp

(
log (odds ratio) ± 1.96

√
P−1e +N−1e + P−1t +N−1t

)

where P and N are the actual number of positive and negative items in the

explanation subset e and the remaining data t.

An odds ratio larger than one indicates that the explained subset is significantly

positive with respect to the rest of the current data items. Likewise, a value smaller

than one indicates that it is significantly negative. However, if the confidence

interval crosses one the subset is not significantly different. To highlight this

important special case the odds ratio and the whiskers are drawn in red in this

case.
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At the right end of each row is a button (Figure 4.3I) to inspect the explained

subset more closely in the Item Level Inspector as described in Section 4.4.3.

The rows shown by the Explanation Explorer can be reordered as well as filtered.

As shown in Figure 4.3, the panel features various controls on the left hand side

to accomplish those operations . Filtering works by first selecting affected rows

(either by clicking on a row or by using widgets on the left) and then clicking on

the “+” in the list of filtered data items (Figure 4.3B) Each new filtering of data

items creates a new entry in this list showing the current number of data items.

By selecting entries higher up in the list the user can go back to this filter. The

topmost entry always contains all data items of the entire data set.

Besides getting a filter for a given prediction score range from the Statistical

Summary View there are two ways of filtering items: searching and conditioning.

The search field (Figure 4.3A) can be used to select rows whose explanation matches

the query specified by the user. While typing or using arrow keys suggestions for

feature names are shown in a dropdown list. Those suggestions are sorted by how

often that feature appears in explanations and how closely it matches the already

specified query. The query can contain multiple features that need to appear in

the explanation separated by a comma “,”. The conditioning widget (Figure 4.3C)

allows to filter by quantities.

As shown in Figure 4.3D, different metrics can be used to filter or reorder the

list of explanations. A good use for the conditioning filter is to remove explanations

that only explain a small subset of the data when looking for unusual or significant

subsets. The explanation rows can also be reordered using these metrics. The

widget contains a list that shows the order in which explanations get sorted. Each

element has a symbol next to it indicating the sort direction which can be clicked
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on to change the sort direction. Selecting an element brings it to the top of the list.

The metrics used for reordering are the same as those used for conditioning

with the additional option of lexicographical sorting by using the feature names of

the explanations. Common metrics to use for sorting or reordering, besides total

amount of items, are “uncertainty” and “odds ratio”. “Uncertainty” (the closeness

of the odds ratio to one: −| log (OR)|) provides a view into problematic areas of the

machine learning model sometimes even unpredictable items when items with the

same value configuration have different ground truth labels. “Odds ratio”, based

on the computation mentioned earlier, points to especially strong predictive areas

of the machine learning model.

4.4.3 Item Level Inspector

The third panel (Figure 4.4) allows for a more granular inspection of items

explained by a given explanation set. This addresses G4 by providing hints about

the extent to which a model can be improved and if changing the data is necessary

for that purpose. The panel consists of a matrix showing the actual feature vectors

of the given items. Each row represents a unique feature vector pattern while

columns represent features. Rows can be expanded so that each row represents

exactly one item. Cells in the matrix are filled if the corresponding feature vector

contains the feature represented by the column. As rows are aggregates of multiple

data items, the number of items is shown as a bar with the number indicated on

the left side of the matrix. The feature names for the columns are shown slanted

on top of the matrix. Bars behind the names show how often the feature is present.

The very first column in the matrix shows the predicted label (using the colors

blue and orange) and its correctness (hatching pattern for incorrect predictions) of
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the given data item. Items with the same feature vector configuration but different

labels are shown in different rows.

Rows and columns can be reordered using different options, similar to Expla-

nation Explorer. One of the important reordering criteria for rows is the feature

order, where items are ordered by seeing whether the first feature of the columns is

present and then if the next feature is present, and is repeated for all the columns.

An important reordering criteria for the columns is the relative feature impor-

tance: the gini feature importance with respect to the current subset of data items

and their predicted labels and correctness.

The combination of the “feature order” and the “relative feature importance”

criteria provide a particularly interesting view on the subset of data items. Using

this order, the most discriminating features with respect to predicted and actual

labels are shown first. Since the rows are ordered by those features, a user can

follow those orderings to see how to separate different predicted and actual labels.

This guidance of the user to relevant associations in the item subset are useful for

quickly understanding the raw data. Note that it is sometimes possible to fully

separate data items this way. However, utilizing this separation would be overfitting

on the validation set. Furthermore, the opposite situation with exact same feature

vectors but with different labels that cannot be separated exists as well.

Some features are not discriminative in terms of “relative feature importance”.

They can be ignored to simplify the matrix view.
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4.5 Case Study: Analysis of Medical Outcomes

The proposed workflow described above stem from a one year collaboration with

a machine learning expert and a medical doctor from the NYU Langone Medical

Center, both co-authors of this paper. The medical machine learning team at the

medical center works in tight collaboration with doctors and hospital management to

derive novel methods to automate medical procedures, provide diagnostics support,

improve efficiency and gain novel insights on medical procedures and processes.

Domain Problem Description. Our collaboration focused on the analysis

and improvement of models built to optimize processing times in the emergency

department of the hospital. The crucial decision here is whether a patient coming

to the emergency room will end up being admitted to the hospital or sent home. In

the case of a patient being admitted to the hospital, a bed has to be prepared for

the patient which results in a 2-hour waiting period where the patient occupies a

bed in the emergency room preventing other patients from being processed. If the

waiting time can be reduced by knowing early if a given patient will be admitted,

the throughput of the emergency room can be increased.

The idea to reduce this wait time is to use predictive modeling at the earliest

time possible so that an admitted patient can be moved sooner. The amount of

data available to make this decision however is very limited. When first presented

with a patient the emergency doctor orders medication for treating, stabilizing,

or preparing the patient for procedures or tests and eventually will conclude a

diagnosis and decide whether the patient is in need of admission.

As medication is the earliest recorded indicator of the admission result and also

is recorded before lengthy procedures or tests it is the most promising candidate for

a predictive model. The main machine learning task is therefore to verify whether
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(a)  Inspection of “Diatrizoate Meglumine” and (b) “Sodium Chloride”.

Frequency 
of an item

Frequency 
of a feature

Figure 4.4: The Item Level Inspector showing a matrix of data items as rows
and features as columns for the explanations Diatrizoate Meglumine and Sodium
Chloride in the initial data set of the case study (Section 4.5). Rows group identical
instances together and show the count on the left side. Features are sorted by
“relative feature importance” showing from left to right how labels can be separated.
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a viable model can be built by using exclusively the limited information available.

Other work has been done in this regard, however, using input features that are

not readily available (e.g., information from medical notes that are written after

the fact) or are hospital specific (e.g., mode of arrival, triage score) [18, 23, 46].

During our collaboration the team of visualization experts met with the medical

team regularly to understand the problem and the data, and to develop collabo-

ratively visual analytics solutions for model diagnostics and interpretation. The

workflow we described in the paper resulted from numerous iterations over the

methods used to derive information from the model and the methods used to enable

their interactive visual exploration.

In this section, we describe one particular example that showcases the capabilities

of the proposed method and provides insights on how it is able to support diagnostic

analysis of complex machine learning model used in a relevant real-world scenario.

In the following, the term “we” is used to refer to the team of visual analytic

experts, a machine learning expert, and a medical doctor, who collaboratively

worked on the usage scenarios described below.

Selecting Initial Data and Model (G1). We initially gathered a dataset of

5980 patients (28% admitted) with binary vectors indicating medications given

to the patient. Those patients were randomly split into a training (1196 patients

with 30% admitted) and test (4784 patients with 27% admitted) dataset. We then

computed several models and tweaked them using mostly the Statistical Summary

View and model specific approaches. This initial dataset contains 398 unique

medications. The table below shows a summary of the models we trained and their

performance.
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(a) Ordered by “total” size showing the most common explanations.

(b) Ordered by “odds ratio” showing significantly positive explanations.

(c) Ordered by reverse “odds ratio” showing significantly negative explanations.

(d) Ordered by “uncertainty” showing item subsets whose predictions are not significant.

Figure 4.5: Showing different orders in the Explanation Explorer for addressing
the goals (G2 & G3) in the case study (Section 4.5). The initial dataset is filtered
for explanations with > 20 data items.
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Model Training Test AUC

Gaussian Näıve Bayes (GNB) [133] 0.58 0.52

Logistic Regression (LR) [132] 0.85 0.79

Random Forest (RF) [20] 0.88 0.79

Multi Layer Perceptron (MLP) [49] 0.85 0.80

As we can see most of the models achieve similar performance on the test data.

In the following we focus exclusively on the Multi Layer Perceptron model but the

same kind of analysis can be performed on any of the other models with similar

results for the models with similar predictive power.

Exploring model decisions and spotting problems (G2 & G3). To start

the analysis we compute all the explanations and visualize them in the Explanation

Explorer shown in Figure 4.5a, which by default is sorted by frequency of expla-

nations. The first thing we notice is that Sodium Chloride is the most common

explanation and that it contains a considerable number of misclassified instances.

Sodium Chloride represents an intravenous therapy, the infusion of a liquid

directly into a vein. As part of a medication order it is used to increase the

effectiveness and response time of a drug and also to apply medication if a patient

is unconscious. Used by itself it has the only purpose of hydrating a patient.

The distribution for the explanation shows both positive and negative predicted

outcomes, which may seem paradoxical at first. This result however stems from the

fact that the context of an explanation (that is, whether features co-occur with the

features used in the explanation; note that certain co-occurring features form other

explanations as they have a direct influence on the outcome) matters in terms of

which outcome it explains.

The Item Level Inspector can help us clarify this situation. We can see that
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hospital admission is the predicted outcome when Sodium Chloride appears together

with other drugs, whereas when this is the only medication the patient received,

the patient is predicted to get sent home (Figure 4.4b).

Looking at the odds ratio value for this explanation we also notice that this

subset is not significantly predictive and that the misclassification rate is high (weak

signal). Note that even though Sodium Chloride is the most common explanation

it cannot be used as a significant indicator of the outcome. From a medical

perspective this makes sense as Sodium Chloride is mostly used as supporting

medication, however, the machine learning model still assigned predictive power to

it. This indicates that the data did not contain a strong enough signal to make a

more informed decision in those cases.

Another common explanation is Ibuprofen a pain relieving drug. It is predictive

for non-admissions which is likely due to patients with pain symptoms that turned

out to be benign. The odds ratio indicates a significant relation to the outcome. On

the other hand Vancomycin, an antibiotic used for treating infections, is significantly

linked to hospital admission which is expected.

After filtering out uncommon explanations (< 20 explained items) ordering

the explanations by “odds ratio” reveals significant indicators for admission and

non-admission (Figure 4.5b). In addition to the already discovered significant

explanations we can see Furosemide, a drug for treating congestive heart failure,

as being strongly indicative for admission and certain drugs in combination with

Sodium Chloride strongly linked to non-admission (Figure 4.5c). The drugs in

question are pain-relievers (Morphine and Ketorolac) and drugs to help with

stomach problems (Ondansetron and Metoclopramide). Note that using an IV

(Sodium Chloride) for stomach related problems helps both hydrate the patient
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and ensures the intake of the medication (after e.g., vomiting).

Finding Weaknesses (G4). Ordering explanations by “uncertainty” (Figure 4.5d)

shows explanations whose predictions are not significant. This is often the case

when it is impossible to correctly predict a set of identical instances that have a

contradicting ground truth.

The first two explanations Ipratropium Bromide, Albuterol Sulfate (medication

for treating chronic obstructive pulmonary disease and asthma, lung diseases that

can have chronic and acute symptoms the latter of which requires immediate atten-

tion) and Sodium Chloride, Ondansetron, Morphine are both predicted negative.

However, the ground truth of those subset has the same distribution as the overall

dataset (thus an odds ratio close to 1). This means the true admission rate of those

two subsets is independent of the medication in question as the admission rate

matches the admission rate of the dataset. If more patients would be observed in

the data this rate would likely stay the same. Through Item Level Inspector we can

see that the features of the explanations are the only features in the respective data

items. No further information is provided that could help swaying those subsets in

a definite direction of admission or non-admission.

Another problematic drug is Diatrizoate Meglumine which has a high misclassifi-

cation rate and an odds ratio close to 1. The drug is a contrast medium that is given

in preparation of PET (positron emission tomography) or CT (computerized to-

mography) scans. As the outcome of the scan is not known it cannot be determined

whether the test was positive for the hypothesis made by the attending physician.

Furthermore, even the presence of other drugs is no indicator for admission as it only

shows the doctor’s risk assessment before the test was ordered and therefore does

not include whether the doctor’s assumption was correct. Note, that Figure 4.4a
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shows how outcomes can be better separated using available features. However,

doing so would result in overfitting on the validation data set which should be

avoided in any case.

Faced with this revelation we explored how we could provide more information

to reduce those ambiguities. In order to properly deal with cases like Ipratropium

Bromide and Albuterol Sulfate or Sodium Chloride and Diatrizoate Meglumine

more information is needed. Through domain expertise we can reason about the

underlying shortcomings of the current dataset, e.g., the nature of the limitations

of Diatrizoate Meglumin. In order to overcome those limitations we need to include

additional information in our dataset. For example, including information about

the final diagnosis of a patient resolves the ambiguities of patients explained by

Diatrizoate Meglumin and other problematic explanations mentioned above, and

likely improves the overall quality of the prediction2. However, this also moves the

time of the prediction closer to the point in time when the actual decision, whether

the patient is admitted to the hospital, is made thus reducing the time-gain for

preparing a bed in case of admission.

Changing Data and Model. In the following we describe how we could improve

the prediction task by including additional information to our dataset. This

additional information, i.e. final diagnoses, was added to overcome limitations

posed by medications not strongly linked to an outcome, as described above. In

order to include those diagnosis features in the data we had to capture new data

which also allowed for capturing a bigger dataset. The new dataset contains 154580

patients (20% admitted) and was randomly split into a training (30916 patients

with 20% admitted) and test (123664 patients with 20% admitted) dataset. It

2Including other information, such as, mode of arrival, gender, or age, might improve accuracy
but would not solve the issues mentioned above.
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contains 1709 unique medications and 15422 unique diagnoses.

The best results of different models on the new dataset are:

no diagnoses incl. diagnoses

Model Training Test AUC Training Test AUC

GNB 0.51 0.49 0.75 0.66

LR 0.71 0.67 0.93 0.88

RF 0.69 0.68 0.98 0.83

MLP 0.71 0.68 0.95 0.88

Maximum values are chosen using digits not shown.

Again we are focusing solely on the Multi Layer Perceptron model for further

analyses (even though similar results can be found with the other equally well

performing models). In order to compare our new data to the previous dataset we

first created models that do not utilize the newly added diagnoses. However, the

resulting AUC is much lower than for the initial data. Looking at the Statistical

Summary View reveals a strong concentration of data points at a specific prediction

score. Focusing on this prediction score in the Explanation Explorer (Figure 4.6a)

shows that it corresponds to the 62776 patients that did not receive any medication

at all. This configuration predicts non-admission as it is more likely to get sent

home when not receiving any medication. The unusual large number of such cases

(∼ 50%), however, hints at a possible capturing error which would also explain

the 11394 cases where patients were admitted. This failure rate severely affects

the machine learning models. For comparison the next largest explanation of

Ibuprofen in the new dataset consists only of 2011 patients. In fact patients without

medication were not captured in the original dataset and removing them from the

new dataset increases the best train / test AUC to 0.83 / 0.80 similar to the original
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dataset. For further analysis we include patients without medication. Utilizing

diagnoses in the models strongly increase the possible AUC.

How Did Diagnoses Features Change the Model? The Explanation Explorer

of the best model utilizing diagnoses features, Multi Layer Perceptron, can be

seen in Figure 4.6b. Noticeably, almost all explanations now consist of diagnoses.

This also means that medication features have now become almost irrelevant

except for medications, like Ibuprofen and Vancomycin, that were strong indicators

before. The most significant diagnoses, using odds ratio, for admission are Sepsis,

Sepsis due to unidentified organism, and Small Bowel Obstruction. Diagnoses

that require antibiotics (e.g., Vancomycin) and pain medication (e.g., Ibuprofen)

respectively. Contradictory or insignificant medications, like Diatrizoate Meglumine

or Ipratropium Bromide and Albuterol Sulfate, do not show up anymore as they

can be more effectively replaced by their diagnoses. The largest explanation, with

2619 patients, is Unspecified which, after some research, turns out to be due to a

policy change before which doctors were allowed to omit a diagnosis if the patient

got admitted to the hospital. Why only 2105 (∼80%) were actually admitted to

the hospital remains unclear.

Diagnostic Insights. By adding diagnoses to the dataset a strong increase in

predictive quality was achieved. However, seeing that diagnoses effectively replace

medication in their predictive power suggests that the “labels are leaking”. That is,

since doctors make the decision of whether to admit a patient at the time of the final

diagnosis there is a strong correlation between the label and the features. This is

an undesired effect as the model is not predicting the outcome anymore but merely

building an approximate lookup table for diagnosis admission rates. If the model

would have kept using medication and only consulted diagnoses for ambiguous cases
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(a) The second dataset without diagnoses ordered by “total” size.

(b) The second dataset using diagnoses ordered by “odds ratio”.

Figure 4.6: Showing the second dataset of the case study (Section 4.5) with and
without using diagnoses features in the Explanation Explorer.

the usability of the model would have been improved due to diagnoses. This is not

the case. Despite its lower objective quality the model using only medications as

input emerged as the more practically useful model. Since experts know about the

strengths and weaknesses of the model, they can distinguish between confident and

ambiguous cases early and decide whether to accept the prediction or wait for the

final decision made by the doctor. This demonstrates that a statistically weaker

model can be more useful in practice.

4.6 Discussion

Through our case study of patient visits, we have shown that by aggregating

model decisions through explanations, we are able to make sense of a large number

of interesting decisions: some expected and some unexpected; some useful and some

less useful; and finally some leading to actionable knowledge and some requiring
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more introspection on the part of domain experts. This level of transparency is

necessary for experts and data scientists to built trust in a model and, especially,

generate ideas on how it can be improved.

In our interactions we have also noticed the usefulness of using explanations

as the main method to make sense of model decisions. As long as the features

used for the problem can be interpreted by the user, the concepts expressed in

the visualization are easy to grasp and learn. During our collaboration we have

experimented with other structures such as trees and rules but we often found that

these were either too complicated or hard to use for modeling complex phenomena

reliably and succinctly.

As we observed in the case study presented in Section 4.5 it is important to

understand which decisions a model is most certain about and also find the decisions

about which it is uncertain. When issues are detected there are several possibilities:

training a better model, finding better data, introducing new and more informative

features, or deciding that the model can make decisions only for the subset of cases

the experts are most certain about. One possible outcome is also deciding that the

problem is simply too complex and that expert judgment is, at the current stage,

preferable.

From the experience we gained in this project we drew a number of important

lessons, which we outline below.

Lessons Learned. In our work we noticed that many of the issues we spot in our

analysis cannot be corrected simply by training a better model with the same data,

but need some major redesign of the feature space and a careful analysis of the

biases contained in the data. In turn, while diagnosing one or more models built

on one data set and set of features can bring useful knowledge, ultimately solutions
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often have to come from better data engineering. We believe visual analytics can

and should play a major role in this regards and find ways to support analysts

explore alternative data and feature spaces. This is even more relevant when we

observe that visual analytics systems and research tends to focus on one single data

set and one single set of features. Focusing on supporting external changes of data

and models offers many challenges and opportunities for visual analytics.

Another important observation pertains to the practical value of developing

a visual validation system separated from and not interfering with the existing

modeling pipeline. From Figure 4.1 it may seem natural to envision visual analytics

methods able to support the user in closing the loop and apply direct modifications

to the model in order to improve it. This is the type of solution advocated by the

interactive machine-learning paradigm [4], in which the user can directly instruct

the model on how to improve its decisions.

However, through our collaboration, we realized that modelers and experts often

have very specific tools they use for model development and refinement and it is

often hard to intervene on their familiar processes and infrastructure. A much more

viable solution is to develop a methodology that does not require a substantial

modification of their existing workflow and infrastructure.

We also observe that while this type of paradigm is useful to provide better

examples to the model, it cannot solve the data acquisition shortcomings we have

outlined above. Fixing these problems requires domain experts to rethink the whole

approach of the stated machine learning problem. For example, improving the input

data might require to capture new features from different sources or rethinking

of pre-processing steps. It seems important to figure out in future research which

particular settings are the most appropriate for the “out of the loop” solution we
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proposed here and which are more amenable to the interactive machine learning

paradigm.

A final observation is how the process of validating the model often leads to

generating insights that pertain more to the reality being modelled than the model

itself. In several occasion, our collaborators ended up spotting potential issues with

how their patients are handled in the hospital. Typical examples include situations

in which some patients are discharged and at the same time are given medications

that represent a strong signal for a serious condition for the doctor. These kind of

mismatches between the mental model of the doctor and the reality modeled is a

potential source of process improvement and can be used to take important actions.

In relation to this last observation, it seems interesting to reflect on how visual

analytics can further leverage the power of modeling for exploratory data analysis

and data sense making. While many systems focus on direct visualization of raw

data as overview, there seem to be relevant opportunities on using modeling as a

preparatory step so that the resulting visualization contains more signals about

hidden associations among features and items in the data.

Limitations. The workflow and its implementation we described work exclusively

with sparse binary data and binary classification. Although, explanation generation

can be extended to other input data types the visual representation of those

explanations has to be redesigned in order to accommodate other data types.

Similarly, handling classification for more than two classes is also not trivial.

Our method works only with interpretable features, that is, features have a

direct connection to a reality the user can easily understand. Many relevant machine

learning problems however require the use of highly non-interpretable features.

Classification of images, audio, and video, is a classic example of this case. In these
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settings the single features used by the model do not have any direct interpretation

the user can directly use for model understanding.

Our solution works best with analyzing one single model at a time but it does not

provide direct support for model comparison. In many practical cases modelers like

to train multiple models and then figure out how they compare. While in practice

most of these comparisons are currently performed on statistical aggregations, it

would be useful to develop methods able to compare multiple models in terms of

the decisions they make and how they differ. This is even more important in those

cases in which models display a similar performance but actually differ in the way

the decisions they make.

Merging same explanations with different outcomes, like in the case of Sodium

Chloride, was done to make a user aware of this case. However, merging penalizes

the odds ratio. In the cases presented in this paper the odds ratio did not get

affected as the correctness for both outcomes were similar. If, for example, the

positive prediction were always right but the negative prediction equivalent to a

random guess both cases would be underrepresented by the odds ratio.

With respect to scalability, neither the total number of features nor the total

number of instances is limiting, since only a subset of available features appear

in explanations and many instances are aggregated. However, it can happen

that explanations are consistently long or do not aggregate well. This is mostly

dependent on the model. Long explanations can be a sign of overfitting or a highly

complex model with few similar instances. Explanations in the latter case are less

interpretable which demands for a strategy to simplify or shorten explanations.
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4.7 Conclusion & Future Work

We demonstrated how visual explanations can be effectively leveraged by data

scientists and medical experts for diagnosing model decisions and for ultimately

making informed judgment about associations among medications and patients’

diagnoses. We will extend our method to non-binary data and multi-class problems.

We will also extend our solution for letting data scientists compare explanations

from multiple models and leverage our model-agnostic workflow for making informed

choices about choosing machine learning models in real-world application scenarios.

We thank Prof. Foster Provost for his help in understanding and using his

instance-level explanation technique. The research described in this paper is part

of the Analysis in Motion Initiative at Pacific Northwest National Laboratory

(PNNL). It was conducted under the Laboratory Directed Research and Develop-

ment Program at PNNL, a multi-program national laboratory operated by Battelle.

Battelle operates PNNL for the U.S. Department of Energy (DOE) under contract

DE-AC05-76RLO01830. The work has also been partially funded by the Google

Faculty Research Award ”Interactive Visual Explanation of Classification Models”.

4.8 General Discussion

The presented workflow [65] shows how instance-level explanations can be lever-

aged to get insights into a model’s decision making process without overwhelming

an analyst with the quantity of such individual explanations. We demonstrated the

feasibility of the workflow using an example with exclusively binary features. While

many problems can be expressed this way it is a limitation to the presented imple-

mentation of the proposed workflow. Furthermore, we evaluated the effectiveness of
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the workflow on the insights gained through it. Those problems illustrate the need

for a more generalizable implementation and a formal study on the effectiveness of

the workflow whose results are described in the next Chapter.
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Chapter 5

User Study on Aggregating

Instance-level Explanations

Recently, there is growing consensus of the critical need to have better

techniques to explain machine learning models. However, many of

the popular techniques are instance-level explanations, which explain

the model from the point of view of a single data point. While local

explanations may be misleading, they are also not human-scale, as it is

impossible for users to read explanations for how the model behaves on

all of their data points. Our paper explores the effectiveness of providing

instance-level explanations in aggregate, by demonstrating that such

aggregated explanations have a significant impact on users’ ability to

detect biases in data. This is achieved by comparing meaningful subsets,

such as differences between ground truth labels, predicted labels, and

correct and incorrect predictions, which provide necessary navigation to

explain machine learning models.
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Summary:

Research Question:

What is the impact of aggregating instance-level explanations?

Key Findings:

• Histograms can be used to aggregate instance-level

explanations and compare subsets effectively.

• Aggregating instance-level explanations significantly

outperforms inspecting individual explanations or unas-

sisted aggregation for detecting biases in the data.

• Inspecting individual instance-level explanations can

be misleading and hurts detecting biases in the data.

• Aggregated instance-level explanations allow to detect

biases equally well as in a table without explanations

while being more scalable.

Josua Krause, Adam Perer, Enrico Bertini

5.1 Introduction

As data continues to increase in complexity and scale, data scientists are

increasingly turning to machine learning to automatically make decisions. However,

when these decisions are applied to high-stakes domains such as medicine, law

enforcement, and financial lending, it is critical for humans to understand the basis

for these decisions.
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Predictive modeling is an area of supervised machine learning which aims to

predict outcomes from data. Such models are trained on examples with a known

ground truth. In order to verify that a model generalizes well to unseen data, a

hold-out data set with known ground truth is typically used to test the model after

training. This allows to detect problems with the model, such as over-fitting on

the training data, i.e., the model learned a phenomenon that is only present in

the training data, by measuring the gap in the accuracy between the training and

the testing data. However, sometimes a bias in the collected data affects both the

training and the test data which makes it impossible to detect through accuracy

alone. A human understanding of the underlying data is needed.

For example, Caruana et al. [25] built an interpretable machine learning model

to analyze mortality risk in patients diagnosed with Pneumonia. After analyzing

the model’s behavior, Caruana et al. detected that patients that additionally

suffered from Asthma had a significantly lower mortality risk, according to the

model and supported by the data. However, this finding goes against current

medical knowledge, as the combination of Pneumonia and Asthma are associated

with a significantly increased mortality risk. In fact, the data was biased because

these high-risk patients with Asthma were given special attention during their

hospital visits which contributed to their lower mortality. The presence of Asthma

was not responsible for their improvement in health, but rather a systematic bias.

Using the interpretable model and human expert knowledge, it was possible

to detect this systematic bias in the data before deploying the model. However,

using interpretable machine learning algorithms typically penalizes their capacity,

thus lowering the potential accuracy of the model [25] or is only superficially more

interpretable by being interpretable on a small scale but not for more complex
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Figure 5.1: Showing the four conditions of our study: (1) instance-level explanations;
(2) only instances; (3) only aggregated features; (4) aggregated features with
explanations. On the left and the top are consistent parts of the user interface
showing: (a) the problem description; (b) the confusion matrix; (c) the subset
selector.

tasks ([68, 76]). As a way to interpret the behavior of machine learning models

independently from the used algorithm, black-box and more precisely, instance-level

explanations recently became popular [69, 83, 102].

However, such explanations are commonly reviewed by experts one-at-a-time.

This task becomes infeasible when dealing with thousands or more instances,

also typical of real-world datasets. To that extent, we propose a visual way of

reviewing instance level explanations with the help of aggregation in combination

with navigation. This is implemented through the comparison of subsets of the test

data under different conditions.

We conducted a study comparing aggregated instance-level explanations to their

individual counterparts. Under both conditions different subsets of the test data

could be compared by participants. By providing models with both biased and

unbiased data we were able to measure the trust of participants in the decisions

made by the models and their ability to detect flaws in the underlying data for

both methods.

Concretely, our contributions include a method for effectively comparing subset
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Figure 5.2: The full interface illustrating the aggregated histogram view. The
user is comparing the model’s prediction of “high” house prices (orange) to the
prediction of “low” prices (purple). The user hovers over the feature “House Style”
revealing a more detailed description, whether the feature is categorical or numeric,
and the importance / feature weight for each of the subsets.

of a data set using histograms; using this method, a way to effectively aggregate

instance-level explanations; and a study showing that this aggregation overcomes

the potential harmfulness of instance-level explanations.

Following, we will first discuss related work in Section 5.2 and then motivate

the circumstances of our study further in Section 5.3. We will propose our design

for aggregating and comparing subsets of instance-level explanations in Section 5.4.

Afterwards we will describe the experimental setup in Section 5.5. The results

of the study are provided in Section 5.6 and their implications are discussed in

Section 5.7. We then conclude in Section 5.8 and discuss future work.

5.2 Related Work

We broadly divide related work into two parts. Studies focusing on the effec-

tiveness of instance-level explanations and attempts in detecting bias, using visual

analytics, in data provided to machine learning models.
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5.2.1 Effectiveness of Instance-level Explanations

When introducing their algorithm, LIME (Ribeiro et al. [102, 103, 119]), the

authors conducted experiments to show the effectiveness of their method. However,

instance-level explanations were only inspected individually and not in aggregate

form.

Kulesza et al. [71] introduced explanatory debugging. Users are presented

individual decisions, made by the model, in a list. Those can then can be used

to “personalize” the model and improve its statistical performance by finding and

giving feedback on incorrect decisions.

Zhou et al. [134] analyzes how uncertainty and cognitive load affects trust

in a machine learning model. Here models are compared that predict the risk

of pipe failure in a sewer systems according to several features. In addition to

the expected failure rate according to model, the length of the observed part of

the pipes is shown to the user aggregated over all instances. The study found

that showing the uncertainty of the model significantly decreased the trust of

participants. Additionally, adding cognitive load in terms of limited decision time

trust in the model decreased significantly as well.

Narayanan et al. [89] explored how humans understand explanations from a

machine learning model. Explanations for individual instances, in the form of

simple rules, were presented and participants were asked to determine the predicted

outcome of the underlying model. The study found that greater complexity, more

rules and more variables, resulted in a higher response time and decreased accuracy.

Note, that the works presented so far always assume that errors stem from the

shortcomings of the model and not from incorrect or biased data.

Stumpf et al. [113] found that under some circumstances, explanations can be
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harmful to the end user, by invoking false confidence. This is on one hand due to

the user extrapolating from few instance-level explanations, making their mental

model seem correct. And, on the other hand, trust in the machine learning model

overrides their initial intuition: “I guess this thing knows more than me. The

system knows more than me. I’ll accept [the diagnosis]”. The study investigated

inspecting individual instances one after the other, however, in our experiments we

could confirm both of those findings even when showing instances in tables.

5.2.2 Detecting Biases Using Visual Analytics Methods

Hohman et al. [52] identifies detecting biased data as one of their five use cases

for visual analytics for machine learning. However, their examples focus on work

that only looks at the data without the help of machine learning models [44] or

simple models where humans adjust the thresholds of the model manually [127].

Chang et al. [27] uses crowd-sourcing to label data and ensure its integrity.

However, this approach does not work if domain expertise in the field is required

to label data correctly.

Simard et al. [108] introduces Machine Teaching. This paradigm uses an already

labeled data set for training a machine learning model. It then presents predicted

instances to a domain expert who then can either, fix an incorrect label, manipulate

features, change constrains, or post-pone a decision if the instance is ambiguous.

This way an expert can ensure that the final model is correct and remove biases.

However, finding biases is not scalable as the experts has to go through many

examples and might miss problems, especially if the performance of the model

increases but the underlying data is incorrect.

Krause et al. [65] demonstrates, how aggregated instance-level explanations
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can be used to find biases in hospital data. They used an instance-level algorithm

optimized for sparse binary input data (Martens and Provost [83]). Through

aggregation, filtering, and reordering, they found biases in their data used for

predicting hospital admission that made it impossible for the machine learning

model to correctly predict admission in some cases. For example, the model knew

about a CET or PET scan happening but was unaware of their results. Thus,

the model was unable to predict the diagnosis since the result of the scan directly

influences the outcome.

5.3 Motivation

Experiments for instance-level explanations typically focus on use cases where

the explanation is presented to the user one instance at a time. This is helpful when

monitoring the continuous performance of a machine learning model in production.

However, it limits one’s ability to gather a holistic view of a model’s behavior

(i.e., a global explanation). Looking at many instances is very time consuming

and potentially ineffective. It is not clear whether people can build a coherent

understanding of a model by looking at a series of instances: comparison between

many instances overloads memory and does not leverage the data compression

capabilities of aggregate representations.

The main goal of our study is therefore to explore the idea of aggregating

data about many instances and their explanations and verify its effects on model

comprehension. More precisely, we want to study the effect of aggregation on what

we call “semantic validation”: the ability of a human to validate the decisions of a

model according to his or her knowledge of the domain.
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Figure 5.3: Comparing the distribution of values by “Actual Label” (i.e., ground
truth). The height of the bars show the percentage of values within the respective
subset (green for “high” outcomes and pink for “low” outcomes). The average
feature weight of each subset is shown next to the feature name. This is only visible
in the condition including explanations.

For this purpose, somebody knowledgeable with the domain has to verify that the

model and the data are consistent with their mental model and, if necessary, override

information coming from statistical aggregates on accuracy. This is an important

task, especially for models making critical decisions such as those employed in

health care [25] and security.

A second goal of this study is to better understand how explanations contribute

to semantic validation. Explanations typically provide, for each instance, a weight

or score that conveys information about how important each feature is, for a given

decision, and for a given instance. An important question therefore is to better

understand what particular benefits, if any, explanations bring to human validation;

whether this is conducted using an instance-level exploration strategy or a more

compact aggregation. Our hypothesis is that explanations may bring value if they

manage to direct the user’s attention to instances and features where biases and

mistakes reside.

In summary, our experiment aims at studying the effect of two main factors:
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aggregation level, that is, instances vs. aggregations, and explanations, that is,

whether feature weights are present or not.

5.4 Design Contribution

In order to effectively analyze machine learning behavior we allow users to

compare subsets of the data set to each other. These subsets are defined by

different combinations of cells in the confusion matrix of the machine learning

model. We selected subsets that help understanding the behavior of the model:

All. The full data set is shown and no comparison occurs. This is the initial view

of the data.

Ground truth. By comparing rows of the confusion matrix to each other a user

can explore the actual labels of the data.

Predicted labels. By comparing columns of the confusion matrix to each other

a user can explore the predicted labels of the model.

Correctness. By comparing the diagonals of the confusion matrix to each other a

user can explore when the model’s prediction is correct or incorrect.

It is thinkable to allow more freedom in selecting subsets to, e.g., compare only

errors of a certain predicted label, however, this would increase the complexity of

the user interface and a user has to understand when to use each of those subsets

in order to be effective.

When aggregating instances, comparing subsets to each other is not trivial.

The näıve solution of showing the actual amount of instances with respect to the
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full data set disadvantages the smaller subset. However, it is not as important

to know the actual distribution, but rather where one subset has a significantly

higher or lower concentration of instances compared to the other. To this extend we

propose a novel approach of scaling each subset separately with respect to their own

magnitude (see Figure 5.3). Note, that we then compare percentages of instances

within the respective subsets. We further indicate strong differences in the subsets

by showing a gray bar at the bottom of the histogram. We are not aware of any

literature that uses or explored this way of comparing subsets with histograms and

claim it as a design contribution. We demonstrate the effectiveness of this design

in Section 5.6.

5.5 Experimental Setup

In order to see whether explanations are helpful in detecting biases of the

training data we used the publicly available housing price data [31] and created

a version that has a bias that needs to be detected. Originally a regression task,

we converted the data set into a classification task predicting whether the house

price is above $150k (598 instances above; 433 instances below; 1031 instances

in total). We also reduced the number of features in the data set to 10 in order

to make it possible to see all features at once in all conditions, without the need

to scroll, so data otherwise hidden off-screen would not be a confounding effect.

The biased dataset needed to have a bias detectable in both the aggregated and

instance-level version, thus we chose to manipulate the outcome of the biased

data set to be dependent on the value of one feature (“Living Area”) with some

random perturbations. The biased outcome was chosen so that a larger “Living
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Area” results in a lower house price. This relationship does not reflect reality (an

increased “Living Area” generally results in a higher house price). The bias is

present to the same degree in both the training and the testing data.

Furthermore, by controlling the degree of randomness while creating the biased

data set we controlled the accuracy of the prediction when training a machine

learning model, such that the model using the biased data has a higher accuracy

than the model on the real data. We trained Multi-Layer Perceptrons [50] on both

data sets resulting in test accuracies of 81.96% for the real data and 88.33% for the

biased data.

5.5.1 User Interface Conditions

For explaining the model behavior we computed the explanations using the

LIME algorithm [102] on the test data. LIME computes feature weights for each

instance in the data. A weight of zero indicates that the feature was not used in the

prediction whereas a non-zero weight indicates that the feature was used. A feature

weight with larger magnitude indicates that the feature was more important to the

prediction than a feature with a smaller magnitude of its weight. However, in order

to simplify the user interface and understanding, we computed the absolute value

of the feature weights. Thus, participants will only see if a feature has influence

on the prediction, not whether this influence is towards a “low” or “high” house

price prediction. This additional information is not relevant for the given task and

would make the user interface confusing.

For comparing instance-level and aggregated conditions we developed two user

interfaces. Both interfaces share two major components, the confusion matrix of

the current model alongside the model’s accuracy and a list for selecting different
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Figure 5.4: The full interface illustrating the table view showing individual instances.
The user is comparing the model’s prediction of “high” house prices (orange) to
the prediction of “low” prices (purple). The feature “Living Area” is ordered by
ascending values and the user hovers over the cell with the value “605”.

subsets to compare to each other (see Figure 5.1). Those subsets can be: comparing

instances with different ground truth labels, instances with different predicted

labels, instances with different correctness, or the full dataset in which case no

comparison occurs. How comparing subsets looks like is dependent on the which

condition is used. The selections use different colors to distinguish the subsets in

order to prevent participants getting confused about which subset comparison is

currently selected (we also indicate the selection in the list). The colors are also

used to highlight the confusion matrix cells corresponding to the current selection.

Note, that all selections always represent all instances in the data and no two

instances from the same confusion matrix cell can appear in opposing subsets.

The design of the user interface lets users iterate through multiple useful slices of

the data (such as getting an overview of the data or comparing different, meaningful,
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subsets to each other). This design, inspired by SYF [95], provides users with a

systematic guide to iterate through meaningful views while also supporting flexible

diversions to pursue insights.

5.5.1.1 Instance-level Condition

The user interface for the instance-level condition is a table showing the values

of each feature for each instance in its cells, as seen in Figure 5.4. This is a change

from how instance-level explanations are usually studied in the literature, where

each instance is presented in isolation. However, this way of showing instances is

limiting as it becomes time consuming to inspect more instances so a participant

would only see very few instances in total.

The columns of the table, representing features, are ordered by the average

weight of this feature, if the condition includes explanations. If the condition does

not include explanations the columns are sorted alphabetically. The cells of the

table reflect the feature weight of the corresponding instance using a yellow color

scale. In addition to that, hovering over a cell with the mouse shows a tool-tip

indicating the actual feature weight number and the full value of the cell and the

full feature name in case those values got abbreviated due to cell size restrictions.

Columns can be sorted by clicking on the table header. This cycles through

sorting the feature values by ascending and descending value. If explanations

are available, the feature can also be sorted by ascending and descending feature

weights.

For comparing different subsets of the data we show two aligned tables. The

colors representing the different subsets are shown on the far left side of the table.
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← Unbiased data set
Biased data set→
Compared subset:

← Unbiased data set
Biased data set→
Compared subset:

← Unbiased data set
Biased data set→
Compared subset:

← Unbiased data set
Biased data set→
Compared subset:

Figure 5.5: Comparison of different subset selections on both the unbiased model
(left side) and the biased model (right side). Features are sorted per segment by
most important at the top-left, row-wise to least important at the bottom-right.
Note, the feature “Living Area”, in both the “Label” (i.e., ground truth) and
“Pred.” (i.e., model prediction), has flipped outcomes for the biased model (right
side). Each subset has a different color palette to not confuse different selections
with each other.

5.5.1.2 Aggregated Condition

The user interface for the aggregated condition represents the distribution of

feature values as histograms, similar to [64]. Feature names are shown above the

histogram and the histograms are arranged left to right row-wise and top to bottom.

For the condition with explanations available, a small bar chart next to the feature

name indicates the average weight of this feature. In this condition, the histograms

are ordered by descending magnitude of average feature weights. The averages are

computed for each subset separately. The order is, more specifically, based on the

average of the subsets’ average weights, which allows features to appear first that
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are only important under certain conditions. If no explanations are provided, the

order is alphabetically.

Hovering over a histogram with the mouse reveals tool-tips showing the actual

instance count of the hovered histogram segment, as well as, the full feature name

and the feature weight number. For categorical features the bars of the histograms

are slimmer so that distinct values are more easily separable. Additionally, the

order of the values indicate their quantity in the data set with the most common

categorical value first on the left.

When comparing different subsets of the data, as seen in Figure 5.5, bars of

each color are shown next to each other in the histogram. The height of the bars

are scaled by their relative proportion within each subset. This means the height

indicates the percentage of instances in the respective subset. The vertical scale

ranges to the highest percentage across both subsets. This allows for seeing where

one subset is more concentrated than the other independent of the total size of

each subset. In order to indicate big differences in the distribution we show a gray

rectangle at the bottom of the histogram if one subset is strongly more concentrated

at this value range than the other (see Figure 5.3).

5.5.2 Study Design

We study four conditions which result from combining different representations

with the inclusion or exclusion of explanations. The different representations are:

• A view of the model through individual instances. Instances are listed in a

table. This is an extension of the approach of inspecting instances one-by-one.

• A view of the model through aggregated instances. Instances are aggregated

in histograms for individual features.
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In each of those conditions we compare the ability to detect biases in the data

by comparing the unbiased data set to the data set with the manufactured bias.

We also explore the impact of those conditions on whether explanations and

aggregation improve trust in the model’s decisions. Particularly, trust in the right

model.

5.5.3 Tasks and Measurements

In order to test conditions against each other we created a questionnaire.

After asking the participant about the knowledge of machine learning and basic

terminology, we have a training section for participants to familiarize themselves

with the interface. First, an introductory video explains all components of the

interface. The video uses an example model from a different data set which is

designed to predict whether a room is occupied or not based on predictions from

various sensors [81]. Then, a series of questions about this example model are asked

and the participant can and has to use the interface to answer them correctly. The

questions ask about the values of features under certain conditions, such as “What

is the model’s prediction for high values of ‘CO2’?”, “What is the lowest value of

‘Humidity’ that predicts ‘occupied’?”, “Are the predictions for low values of ‘Light’

correct?”. The questions are constructed in a way to be easily answerable under

all conditions given an understanding of the user interface and basic principles of

machine learning. An incorrect answer leads back to the beginning of the section

and the participant is given the chance to correct the mistake. We did not use those

questions to exclude any participant but rather for giving them an opportunity

to get comfortable with the user interface. Note, that it is not necessary for

participants to have a deep knowledge in how machine learning algorithms work, as
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long as, the basic principles of prediction, ground truth, or accuracy are clear. This

reflects that domain experts would often not necessarily be trained in developing

machine learning models but rather using them.

As final question of this segment the participant has to detect, in a hypothetical,

scenario that a prediction does not make sense from a semantic standpoint, even

though that prediction is correct from the perspective of the model. This question

aims to prime the participants for the upcoming task and teaches that model

correctness is not necessarily equivalent to semantic correctness. After this, we ask

some common sense questions about how house prices are supposed to correspond

to certain features. This ensures that participants have enough domain knowledge

for the upcoming task.

In the main part of the study we present the participant with both housing

data models one after the other and encourage them to explore the models with

the end goal of determining which model can be trusted more. The order of the

data sets is random. The participant then has to answer the following questions

about each model: “Do you think the predictions of the model make sense?”, “How

well does the model perform in terms of accuracy?”, “How much do you trust the

model?” on a five-point Likert scale; and explain the reasoning for their answers.

For each question we provide a more in-depth explanation with examples.

After inspecting both models, we ask the participants to state which model

performs better in terms of accuracy, which model can be trusted more, and whether

the model they trust more had the higher or lower accuracy, or no model can be

trusted more than the other. We ask participants to describe their reasoning and

also state their confidence in their decision on a five-point Likert scale.
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5.5.4 Participants

We ran all four conditions of the study on Prolific1, an online survey recruitment

system. Participants in online recruitment aim to increase their payout to effort

ratio. Thus, we took several measures to ensure high data quality. Firstly, we only

allowed participants with a high rating on the platform and an interest in computer

science. Secondly, we excluded all data from participants that had a suspiciously

fast completion times (less than 10 minutes after watching the introductory video)

which would not allow them to establish well thought out answers. We also excluded

participants with too little interaction with the interface, determined by the number

of histograms or table cells they inspected and how often they changed the subset

comparison selection. As attention question we used the question “Which model

had the higher accuracy?” to remove participants. This question has an objective

answer that had to be determined during the study as well. By reading the full text

answers we could exclude participants that had little understanding of machine

learning or the assigned task, or were giving non-sense answers. We retained 100

eligible participants divided evenly across the four conditions. This represents less

than 47% of total participants, not counting participants that stopped the study

before submitting.

5.6 Results

Following, we will perform an exploratory analysis of our study results.

1https://www.prolific.ac/

https://www.prolific.ac/
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Figure 5.6: A kernel density estimation of the responses of participants on a five-
point Likert scale about how much they trust the biased model and whether it
makes sense to them. Note, that the majority of participants did not detect the
bias of the model.

5.6.1 Bias Detection and Trust

When comparing how much participants trust a particular model and whether

they think this model makes sense, one can see that those responses are typically

correlated (see for example Figure 5.6 with a Pearson correlation coefficient of

0.759 and Spearman rank-order correlation coefficient of 0.745). This also extends

to plain-text answers, which allow to detect whether participants correctly found

the bias in the correct data set unambiguously. Participants were very verbose

about their findings, if they found something: “It has higher accuracy so should be

more trustworthy than the other one. However some of the results don’t make sense

to me. Maybe this is just an atypical property market.”; “It is accurate, yet the

predictions do not make much sense. Higher quality houses having a larger amount

of low priced houses, percentage-wise? More rooms, area, or stories resulting in

lower prices? The logic does not work out.”; “larger houses are valued lower than

others which are smaller” (sic).
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(a) Bias detected and correct preference. (b) Bias detected but no preference change.

Figure 5.7: How participants changed their responses comparing the unbiased
model to the biased model. A positive value indicates that the response was higher
in the unbiased model. (a) shows the case when participants detected the bias and
subsequently preferred the unbiased model. (b) shows the case when participants
detected the bias but still chose the biased model.

However, the above mentioned correlation is not perfect. This is likely due to

some participants not being convinced, that their correct discovery of the flaw in

the data is enough that the corresponding model cannot be trusted: “If the data

says it’s true, then it’s true I suppose and it’s more trustworthy than my common

sense.”; “I feel like the results of [the biased model] where strange even though they

where correct according to the dataset.”; “I’m drawn to trusting the model which

was more accurate even though it didn’t entirely make sense to me.” (sic).

This divergence in trust and the finding of flaws in the data can also be seen in

Figure 5.7. If finding the flaw in the data swayed the participant to not trust the

model an increase in trust for the unbiased model compared to the biased model

corresponds to an increase in the perception that the unbiased model makes more
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(a) Correct trust (b) Detected bias

Figure 5.8: (a) compares how many participants trusted the unbiased, thus correct,
model more. (b) compares how many participants correctly identified the bias in
the data, determined from plain-text answers. Note, that in both cases adding
explanations to the table view hurt performance, whereas adding explanations to
the histogram view improved performance.

sense (Figure 5.7a). However, if the finding did not influence the preference, trust

between both models stayed the same (Figure 5.7b).

In total, 25% of people who correctly identified the bias still opted to trust the

biased model more, due to the higher reported accuracy of the model. A further 8%

who identified the bias trusted both models equally. This aligns with the findings of

Stumpf et al. [113] that trust in the machine learning model may override people’s

initial intuition about its performance.

5.6.2 Comparison Across Conditions

Comparing the correctness across all four conditions can be seen in Figure 5.8.

First, we can see a strong improvement both in correctness and whether the

participant trusted the unbiased model more, when switching from tables to

histograms while having access to explanations (p-value Figure 5.8a: Fisher’s

0.0477, χ2 0.0489; p-value Figure 5.8b: Fisher’s 0.0161, χ2 0.0169). When adding
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Figure 5.9: The left side shows interactions with the table view measured by
counting how many table cells were hovered by the mouse. The right side shows
interactions with the histogram view measured by counting how many histogram
bars were hovered by the mouse. The plot shows the bootstrapped mean and
confidence interval for each setting.

explanations to histograms (p-value Figure 5.8b: Fisher’s 0.0359, χ2 0.0366) we can

see a significant improvement when comparing correctness. We hypothesize that

explanations are a necessity for histograms to work effectively, since they point out

which, of the possibly many, pattern seen in the distributions are meaningful. We

can also see an improvement in whether the participant trusted the unbiased model,

however, it is not significant (p-value Figure 5.8a: Fisher’s 0.0982, χ2 0.0986).

Furthermore, we see a strong decline in correctness when adding explanations to

tables (p-value Figure 5.8a: Fisher’s 0.0127, χ2 0.0137; p-value Figure 5.8b: Fisher’s

0.0311, χ2 0.0320). At first, we were puzzled at this counter-intuitive result and we

double and triple checked that those results were not a simple mix-up in conditions.

We hypothesize that, having explanations at hand in a table, focuses the attention

of participants to fewer instances and additionally makes them more confident that

they fully understood the model. This extrapolation from few instances aligns with

the findings of Stumpf et al. [113], who found that explanations can be harmful

in certain circumstances, and shows that the findings also apply to a tabular

representation of the explanations.

In order to investigate this hypothesis further, we can look at the number of

interactions of the participants performing the tasks. We can see in Figure 5.9 that

participants engaged with the table view significantly more when no explanations
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Figure 5.10: Overall completion time of the study by condition. The plot shows the
bootstrapped mean and confidence interval for each setting. There is no significant
difference between the conditions.

were present. This might be an example of Hullman et al. [54], who state that

information visualization might benefit from visual difficulties, since people are

forced to interact more with the visualization. This seems to be the case for a table,

without any further help from the interface about what to look at.

Despite that, we found no significant difference in the time participants took

to complete the study, as can be seen in Figure 5.10. Even though the histogram

view with explanations and the table view without explanations do not have a

significant timing difference, we hypothesize that an aggregated representation of

the model is a more effective method for finding biases. This hypothesis is rooted

in both conditions performing equally well and histograms being a more scalable

data representation than tables, due to their independence from the magnitude of

the data.

5.7 Discussion

We showed that aggregating instance-level explanations can be an effective way

of enabling humans to identify biases in the input data of machine learning tasks.

Even though, assisted aggregation is as effective as unassisted individual inspection
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it scales better with large data sets. Individually inspecting instances in the data

is only possible on a sample of the data and requires extrapolation of findings to

the whole data set. Aggregation does not suffer from this, as the representation of

the data is independent from its size. Even though, it requires dedication, our test

data set was small enough to still be able to scan in full if necessary.

Furthermore, the bias planted in the data was simple enough to be able to be

found under all conditions. This might not be true for real-world data sets with

more complex biases. Even though, histograms are advantageous with respect to

tables in finding arbitrary patterns, they are still limited to only one dimension.

Biases that are present only through combinations of features will not be detectable.

In our study, we could confirm findings from Stumpf et al. [113] and overcome

their limitations by using instance-level explanations with aggregation. However,

we could not overcome trust in machine learning model authority, despite being

confronted with contradictory evidence, in all cases. Speculatively, this might stem

from people being used to being presented with cleaned up and validated data, as

this cumbersome process is often hidden from the end result.

5.8 Conclusion & Future Work

We presented a novel way of aggregating and comparing instance-level expla-

nations. We found that this method can help humans identify biases in the input

data to machine learning models. However, this is only the case in combination.

Aggregation alone or individual instance-level explanations might lead to worse

performance in this regard. We demonstrated, that an aggregated instance-level

explanation approach is as effective as going through the data unassisted. This is
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promising, as the proposed method is independent of the size of the data set and

thus likely more scalable than its non-aggregated counterpart. However, specifically

confirming this hypothesis remains future work.

As we were conducting an exploratory analysis of the study, individual findings

remain to be tested in-situ in future work. Furthermore, experimenting with more

complex forms of data biases opens up additional research opportunities.

All in all, we presented a usable method for effectively utilizing instance-level

explanations on a large scale. As machine learning models become more complex

and opaque, this becomes an important stepping stone in tackling the behemoth of

effectively improving machine learning models and their data alike.

5.9 General Discussion

In our study we found that aggregating instance-level explanations using his-

tograms and subset comparison provides a scalable alternative to inspecting tabular

data manually for finding biases in the input data of a predictive model. We only

tested finding biases that were possible to find under all of our four conditions. It

would be easy to construct a bias that is impossible to find looking at a table of the

data, but this would be an unfair comparison. Thus, our method is more scalable,

since it enables to find a super-set of biases detectable in tables.

However, our method requires both aggregation and instance-level explanations.

Without either of those, performance in finding biases decreased significantly.

This also brings light to the issue that individual instance-level explanations

can be misleading and thus harmful. We could confirm, that the findings of

Stumpf et al. [113], which show that inspecting individual instance-level explanations
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can lead to harmful extrapolations of the model’s behavior, also apply to a tabular

representation. However, our method overcomes this harmfulness.

Furthermore, even when confronted with evidence of an erroneous data set

a quarter of the participants still preferred the model with higher accuracy but

incorrect data. This implies a strong trust in statistical accuracy whose perception

needs to be reevaluated.

The presented work shows the effectiveness of aggregated instance-level expla-

nations, and in extension of the previously presented Model Diagnostic workflow,

but it also opens up further research opportunities.
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Chapter 6

Thesis Summary

In this thesis, we discussed the role of visual analytics to explain black-box

machine learning. We saw that global approaches, like feature selection methods,

are not informative enough to help understand model decisions. Different strategies

preferred different, equally reasonable, feature sets without having a significant

impact on predictive performance. This showed, that inspecting and comparing

alternate settings may let machine learning experts develop insights that overwrite

their initial intuitions.

Next, we saw that partial dependence with a derived feature importance score

allowed to effectively detect model errors. Detectable errors included: over-fitting,

under-fitting, biases caused by imputation, and leaking labels caused by incorrect

cause-effect relationships. Furthermore, localized inspections helped to understand

the how and why of specific instance predictions by finding locally impactful

features.

Then, we proposed and discussed the Model Diagnostic workflow, which is based

on aggregating local instance-level explanations in order to gain insights about a
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model with the intent of improving it. We showed that the Model Diagnostic work-

flow enables a scalable understanding of local decision making of a predictive model

and that aggregating instance-level explanations allows for semantic validation of

the input data. As a model can only perform as well as its input data, gaining

insights about the limitations of a model in turn help with feature engineering on

said data.

Finally, we showed how histograms can be effectively used to analyze aggregated

instance-level explanations. With the help of comparing meaningful subsets, aggre-

gated instance-level explanations significantly outperformed inspecting individual

explanations or aggregation without explanations in detecting biases in the input

data while being more scalable than a tabular representation. Furthermore, we

showed that inspecting individual instance-level explanations can be misleading

and hurts detecting biases in the input data.

All in all, we demonstrated a workflow for effectively utilizing black-box instance-

level explanations in order to improve model correctness via semantic validation.

However, this approach has some limitations to overcome which we will explore next.

Note, that those limitations are not an argument against the presented techniques

but merely a starting point for future research.

6.1 Limitations and Assumptions of Black-Box

Analysis

Analyzing machine learning models using black-box techniques can only ap-

proximate the true behavior of the model. Looking at more instances or increasing

the sample rate for both partial-dependence plots or instance-level explanations
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increases the granularity and precision of the analysis but cannot express the

underlying relationships of the input in full. On the other hand, those relationships

can be too complex to be understood by a human. The challenge is to find a middle

ground between the fidelity of explanations and their interpretability.

Additionally, some tasks have complex interactions between input features that

cannot be described by interpreting individual features. For example, instance-level

explanations provide weights for the features for a given instance. However, those

weights can be completely different for other instances. Instance-level explanations

alone do not provide enough information to reason about why the weights changed

in this particular way. A possible solution could be to expand the concept of

explanations to allow for representing non-trivial relationships between features,

such as using rules to express partial behaviors of the model or a higher dimensional

partial dependence.

Black-box analysis methods provide the convenience of using the same algorithm

for multiple models. However, with regards to data some decisions still need to be

made. For example, for the instance-level explanations in Chapter 4 we determined

that Martens and Provost’s [83] algorithm provided consistently better results

than Riberio et al.’s[102] algorithm for our use case of highly sparse binary data.

This is due to the fact that different data types require different approaches for

explanations. A binary feature can have an explanation that describes the presence

or absence of the feature whereas for a numeric feature the actual value is important.

Our Model Diagnostic workflow is agnostic to the used instance-level explanation

algorithm but this choice still has to be made.
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6.2 Generalization to Other Forms of Machine

Learning

In this thesis, we only focused on predictive modeling tasks with structured

inputs. Even though this is a large and popular subset, it does not cover the

entirety of machine learning or even predictive modeling. Presented techniques are

not immediately transferable to tasks such as online learning or streaming input

data, which requires recurrent models, such as LSTM (Long Short Term Memory)

models [51]. Those areas pose further challenges and offer a variety of research

opportunities.

On a different note, the recent popularity of neural networks offers an additional

opportunity in terms applicability of the work in this thesis. Neural networks are

differentiable models, which makes it possible to compute gradients towards desired

outcomes for given inputs. As instance-level explanations aim to approximate this

gradient to some degree (LIME [102] is essentially a Monte-Carlo approximation of

the above mentioned gradient) gradients might be used as drop-in replacements

for instance-level explanations in the techniques proposed in this thesis. However,

whether gradients are a computationally faster alternative to instance-level expla-

nations and whether they can achieve similar results poses an interesting open

research question.

6.3 Implications

Meta-learning, i.e., using machine learning to learn model architectures for

solving the actual task, is recently growing in popularity. With systems, such as
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auto-sklearn [38] or AlphaGo [107], the role of humans in machine learning shifts

away from being the architect of models to being a domain expert of the modeled

problem. Humans have vast contextual knowledge that is hard to communicate

directly to machine learning models. As such, understanding the behavior of

black-box machine learning models and semantic validation of their performance,

as presented in this thesis, is becoming more and more relevant.

Interestingly, because humans are used to having contextual knowledge about

real world problems machine learning is trying to solve, it often seems surprising

when and why a model failed, since the correct prediction “is so obvious”. Thus, it

is crucial for machine learning models to correctly communicate their behavior to

humans in order to prevent such fallacies to go unnoticed. This thesis provided an

important step towards achieving this goal.
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Chapter 7

Conclusion & Future Work

In this thesis we explored how visual analytics can be used in order to leverage

the full potential of black-box machine learning. To this extend we used a variety

of techniques to explain the behavior of machine learning models, both globally

and locally, and developed a workflow to utilize those explanations to diagnose

models. We also studied the effect of aggregating local explanations in order to

detect biases in the input data of machine learning models. However, each finding

shown in this thesis posed further questions, providing research opportunities to be

investigated.

This thesis identified problems in the area of machine learning that can only be

fully solved with human expertise. In this context, visual analytics proved to be a

powerful tool in assisting humans in performing those tasks.
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