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Abstract

Analyzing dynamic graphs is complex. Using node link diagrams to display the
graphs and its changes originates many challenges. This thesis introduces a novel
interactive visualization technique for dynamic graphs by splitting complex graph
transitions into simpler sub-transitions called stages. Transitions can be split by
subsets of changing nodes, clusters in the graph, or by dividing the transition into
stages of animation phases: edge removal, edge creation, and node movement. The
created sub-transitions then can be reordered or merged again for the purpose of
examining interesting changes in the graph. Like in a comic, the sub-transitions can
be used to tell the story of interesting graph changes in a series of panels. This makes
it easier to gain insight into the overall changes. Additionally, animation can be used
to deepen the understanding of transitions. Furthermore, in this thesis I discuss
how static node-link representations of dynamic graphs can convey the changes of
a transition by using annotations. A prototype used on example graphs shows the
feasibility of those approaches in the exploration of dynamic graphs.
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1. Introduction

Dynamic graphs occur in many application domains. In the sciences, natural processes
can be modeled as dynamic graphs that reflect changes in relationships between
entities and therefore change a graph over time. For example nodes in a computer
network can establish new connections to other nodes or disconnect from them. A
railway infrastructure can change when tracks are closed for maintenance or a new
line is opened. Likewise, a distribution network for resources like electricity or gas is
dependent on construction or closing of supply lines. On international scale those
networks often change due to political or economic reasons. In social networks people
can become friends or terminate a friendship.

Analyzing dynamic graphs is a challenging task and techniques used for static graphs
cannot be adapted for the dynamic case in a straight forward way. Applying layout
algorithms for static graphs to dynamic graphs either create layouts that are incorrect
and lead to false assumptions about the graph, or layouts that are correct but create
strong node movements that are hard to follow. A compromise in layout quality has
to be made which still leads to complex and hard to analyze transitions. In this thesis
I present a novel technique to interact with dynamic graphs. By splitting complex
transitions into smaller manageable sub-transitions insights about the changes in the
graph can be gained.

In Chapter 2 we discuss different approaches to address the problem of analyzing
dynamic graphs. After that, in Chapter 3, we further explore why properties of
static graphs cannot be easily adapted for dynamic graphs. Choosing a node-link
representation for start and end stages of dynamic graphs we can use edge outlines
to prevent problems with edge crossings. Visual annotations in form of pin shapes
show the movement of nodes due to layout changes and colors indicate emerging and
removing edges. Those visual cues were inspired by a preliminary study.

The transition of a graph can be split up into three phases, removing edges, creating
edges, and moving the nodes. Or, following the example of comics, complex transitions
can be split into more granular steps that are easier to understand. In the described
prototype, those splits can be done either automatically, using clusters in the graph
as base for which changes happen in which sub-transition, or by selecting those sets
manually via the user interface. In order to give a user flexibility, sub-transitions can



2

be reordered or merged again. Since only a subset of nodes is going to be changed per
sub-transition closures around the affected nodes are used to find the relevant nodes
quickly, and, with the help of colors, their end position in the next sub-transition is
also indicated by closures around the nodes.

A zoom-able user interface is used to let a user navigate the created comic-strip and
get either an overview over all steps or zooming in on one sub-transition in order
to examine it. The created comic-strips give insight in the changes of the dynamic
graph from one step to the next and help presenting those findings to others.

In addition to the static representation of the sub-transitions of the dynamic graph,
the user can use animation to see the changes from one sub-transition to the next.
The animated transition is automatically split into the three aforementioned phases,
edge removal, edge creation, and node movement. With the help of a slider, the user
always has the possibility to interact with and interrupt the animation.

Chapter 4 describes how to make the zoom-able user interface intuitively usable with
zooming to the position of the mouse cursor and zooming to a given rectangle on
the screen. Furthermore, in order to create a responsive user interface, performance
optimizations for rendering need to be applied. When trying to animate many items
at once we show how to overcome some mistakes of a quick implementation, like
inconsistent positions during the transition. With the help of fork join pools we can
minimize the time spent in the actual computation of the animation by utilizing
multiple CPU cores and parallelism.

We further present different approaches to create iso-surfaces used to enclose sets of
nodes: Bubble-sets, a widely used technique, and Kelp-like diagrams. Kelp diagrams
are an aesthetic way of creating closures for sets. A simplified version is used in the
prototype. Those Kelp-like diagrams are easier to create than Bubble-sets, due to
less complex requirements and provide a cleaner and more coherent look.

The application of the prototype is shown in three case studies in Chapter 5. We
demonstrate the prototype on three dynamic example graphs. The first graph is
a small manually created graph. The second and third graphs represent social
networks. The graphs show who is in face-to-face contact with whom during a day
at a conference and how the friendship between girls change over time. The graphs
are analyzed via the prototype by creating comic resembling stories that convey
interesting changes.

In Chapter 6 we discuss which changes in a dynamic graph are potentially interesting
for analyzing and how the prototype can be used to create series of sub-transitions
of a dynamic graph to gain insight in those changes. We also discuss possible
drawbacks of the prototype and the splitting technique, like loss of context for too
granular changes, and falsely interpreting sub-transitions as valid intermediate steps.
Furthermore, we present possible extensions to the prototype as future work.



2. Related Work

Optimizing layout algorithms for dynamic graphs is an abundant research focus.
Brandes and Wagner [7] define the main goal as a consistent, stable, and readable
dynamic graph layout. Friedrich and Eades [14] achieve this by preserving the mental
map of the reader in between time steps. Reducing node movements also lead to
this preservation (Lee et al. [23]). However, Purchase and Samra [27] states that
preserving the mental map can lead to false assumptions about the graph in some
cases. Also, the layout performance is decreased in later time steps which can be
mitigated by using a compromise between mental map preservation and good layouts
as suggested by Saffrey and Purchase [29]. An example of this is given by Brandes
and Mader [6] who use a weighted combination of a global layout with local layouts.

Animation is a widely used technique for dynamic graph drawing, used for example
by Brandes et al. [5]. Yee et al. [35] use interpolation in polar coordinates to
transition dynamic graphs in a radial layout. To preserve the mental map during
the transition, Friedrich and Eades [14] animate with non-linear interpolation. This
avoids non-existing structures, and communicates the reason behind the layout
change.

Principles of animated presentation are described by Zongker and Salesin [36]: In
contrast to exaggeration of movements for creating vividness in traditional animation
as reported by Lasseter, [22] only meaningful movements should ideally be shown.
Slow-in slow-out timing should be used, as further investigated by Dragicevic et al. [12].
Multiple simultaneous movements are difficult to follow, therefore only one movement
at a time should be shown. The principle of showing only one movement is difficult
to obey, although Robertson et al. [28] shows that similar moving objects can still
be followed correctly. Tversky et al. [32] argues that animation is only useful when
there is a natural connection to the underlying change and the animation itself is
performed slow and clear enough to be perceived easily.

Furthermore, splitting animations can be beneficial. Heer and Robertson [19] use
staging of animations to keep them perceivable . DOITrees [9][18] and SpaceTree
[26] both use focus+context tree exploration systems, by utilizing fish-eye view and
zooming interfaces. The animation of tree changes is decomposed into trimming
branches, adjusting the layout, and growing new branches. Bach et al. [2] with
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GraphDiaries use staging on general dynamic graphs by splitting graph transitions in
removing edges, moving nodes, and creating new edges. Edge changes are highlighted
by color.

As alternative to animation, dynamic graphs can be represented as small multiples.
Baudisch et al. [3] compare animation and small multiples to visualize dynamic graphs
and remark that static depictions of motion perform at least as well as animation,
while helping to process changes better. Archambault et al. [1] further state that
small multiples are faster to interpret, while animation has a lower error rate. Von
Landesberger et al. [33] find that animation is better for grasping larger changes,
whereas a static representation enables understanding of more detailed changes. Beck
et al.[4] recently proposed a hybrid system of animation and static representation
by applying Rapid Serial Visual Presentation to parallel edge splatting of dynamic
graphs.

While related work has addressed layout, animation, small multiples, and even RSVP
for exploring dynamic graphs. To the best of the authors knowledge no approach has
proposed a staging into sub transitions or the use of visual annotations as described
in this thesis.



3. Design

In this chapter we discuss the design principles that were used for the prototype.
After a formal definition of dynamic graphs in Section 3.1 and Section 3.1.1 we
explore properties that help analyzing static graphs (see Section 3.1.2). Due to
the limitations of those properties we conclude that a graphical representation of
graphs as node-link diagrams is necessary and transfer this representation to dynamic
graphs (see Section 3.1.3). In Section 3.2 we further discuss how to make this
visual representation easier to read and interpret. To reduce complexity of a graph
transition those changes can be split into its phases, removing edges, creating edges,
and moving nodes, as described in Section 3.3. A preliminary study of visualizing
changes in graphs in Section 3.4.1 and traditional comics splitting a complex process
into smaller steps in Section 3.4.2 serve as inspiration for the idea of staging graphs
by splitting the transition into less complex sub-transitions and lead to the panel
design described in Section 3.4.3.

3.1 Dynamic graphs

A dynamic graph is a series of graphs Gt = (Vt, Et) where t is a discrete time step.
The set of nodes Vt do not need to be same for all time steps. However, there is no
difference between isolated nodes and non-existent nodes for most interpretations.
Therefore the set of nodes Vt can be replaced with V =

⋃
t Vt.

3.1.1 Changes in graphs

Since we ignore changes in the set nodes between time steps by isolating nodes that
are otherwise removed, the only changes left to analyze in a dynamic graph are edge
changes. There can be two types of edge changes, the creation of a new edge and
the removal of an existing edge. This information is enough to describe a dynamic
graph. Given an initial state G0 = (V,E0) every successive step can be computed
via Et+1 = (Et ∪ Ecreate

t ) \ Eremove
t .

When a dynamic graph is represented as node-link diagram a third change between
time steps exist. Depending on the type of layout strategy for the dynamic graph
nodes may change their position which results in their movement. This can be
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avoided by using fixed positions for the nodes. However, this results in reduced
readability for at least some time steps of the graph in which the nodes are not laid
out optimally. A more detailed discussion about layouts for dynamic graphs can be
found in Section 3.1.3.

3.1.2 Interesting properties

In the analysis of static graphs there are a number of properties of nodes or sets
of nodes. Centrality measures, like degree, betweenness, or closeness, describe the
importance of one node within the graph. This can mean how influential a person is
in a social network, or how likely traffic goes through a node of a computer network.
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Figure 3.1: An example graph. The nodes with the highest degree (4, 9, and 14)
are also nodes with a high betweenness. Betweenness indicates that in order for
information to flow through the graph (i. e. diseases that spread through a social
network) those nodes are important to connect parts of it. Removing them would
have a great impact of how information gets distributed. The betweenness is also
high for the three bridges (4–5–6, 3–7–9, and 11–13–14). Closeness of nodes is higher
in the central cluster (8, 9, 10, 11, 12) which means that information originating in
those nodes spreads faster than in other nodes. The nodes 14, 15, 16, 17, and 18 do
not form a full cluster because they are only connected to each other via node 14.

Sets of nodes can roughly be categorized as clusters or bridges, with clusters being
a group of nodes that are highly connected to each other and bridges being paths
of nodes that connect two clusters. Within clusters, information is easily shared or
diseases spread quicker. However, without bridges the information or disease stays
in one cluster and cannot reach another. Nodes that connect multiple clusters are
important to connect e. g. people of different groups in social networks. If those
nodes are removed, a connection becomes more difficult. Clusters on the other hand
can handle removed nodes more easily.

Those properties cannot be applied to dynamic graphs in a straight forward way.
For example, given a bridge connecting two clusters. If this bridge is removed in
a transition, but another bridge between the clusters is created, the relationship
between the clusters stay the same. If the edge density within a cluster decreases in
a transition the former cluster might not be considered a cluster anymore in the next
step. Likewise, nodes can gain connections so that they can be considered as clusters
in the next step. In the analysis of a dynamic graph it is therefore important to see
how connections in the graph change overall, within clusters, and between clusters.
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Figure 3.2: The same graph presented as node-link diagram and matrix. According to
Ghoniem et al. [17], statistical features are easier to read in the matrix representation
while following paths is easier in the node-link diagram. Note that the quality of the
node-link diagram suffers because of the graph becoming a ”hair-ball”.

3.1.3 Visualizing graphs as node-link diagrams

A good visual representation of a graph is in form of an adjacency matrix. Many
statistical features of the graph are easily visible and the matrix can be reordered
to show clusters. In those areas adjacency matrices perform better than node-link
diagrams (see Ghoniem et al. [17]). However, adjacency matrices are inferior to node-
link diagrams with respect to tracing paths, scalability, and presenting additional
properties of nodes. Note, that the scalability of node-link representations is limited
as well, since larger graphs tend to become ”hair-balls”, and that showing additional
properties in a node-link diagram can make the visualization of the data more difficult
to read because of information overload.

For creating a node-link representation the graph nodes need a position. These
positions can be generated by a layout algorithm. For general static graphs a common
layout strategy is to try to map the graph distance of the nodes to spacial distance.
However, the graph distance cannot generally be represented correctly. This error in
distances is called stress. A popular metaphor for creating a node layout with low
stress is to represent edges as springs and model nodes as electrons with a repulsive
force towards each other. This leads to groups of nodes forming visual clusters while
different groups get pushed away from each other. The metaphor led to the use of
multidimensional scaling with the help of stress-majorization (e. g. Gansner et al. [16]
or Khoury et al. [20]) for layout creation which behaves similar to simulation based
approaches.

In the case of dynamic graphs, creating optimal layouts for every time step leads to
strong movements of the nodes which is not desired. On the other hand creating a
layout considering all time steps at once leads to a rather sub-optimal layout but
no movement at all. Having no movement of nodes makes it easier to find nodes
in different time steps. However, sub-optimal layouts can lead to false assumptions
about the topology of a graph. For example, a group of nodes could form a visible
cluster in the averaged layout, even though this group may not be connected in
a given time step. Brandes and Mader [6] provide a compromise between robust
layouts with little motion and optimal layouts per time step. Their findings have
been used to create the layouts for the example graphs.
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Figure 3.3: Design of the node-link representation. On the right edges are colored
to indicate their change until the next step. Blue edges do not exist yet. Note the
outlines of the edges which help to distinguish edges that are crossing each other.

3.2 Improvements for dynamic node-link diagrams

Besides laying out nodes in an intuitively meaningful way node-link diagrams have
some graphical challenges. Given a non-planar graph, we have to deal with edge
crossings. A large number of edge crossings can make it difficult to see which nodes
are connected by an edge. Some geometrically correct approaches exist to avoid
drawing edge crossings by terminating a line before it crosses another edge and
starting it again before the end of the edge. If both drawn segments of an edge have
the same length it is easier to connect them via closure, allowing to only hint edges
(see Bruckdorfer et al. [8]). However, for our prototype it is sufficient to add a small
outline when drawing edges (See Figure 3.3). This way we can identify both crossing
edges more easily. Edges that are going through other nodes without connecting to
them is a problem for the layout strategy and is much harder to solve.

Color can be used to hint at edges that are newly created or will be removed. Blue
and orange for creating and removing respectively can easily be understood without
having a color key in the panel. This encoding is also used by Bach et al. [2]. The
color combination can also perceived by color blind persons without problems (See
Figure 3.3). Easing the transition from a visible edge to a non existent edge (or vice
versa) can be done by fading edges out or in. This also makes the color key more
easily understandable.
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Figure 3.4: Three strategies of showing node movement. (a) shows the movement
as arrow, (b) as dashed line with indication of the final position which is inspired
by Figure 3.6a, and (c) a pin shaped design using findings of Ware et al. [34]. The
direction of the movement is encoded by width and opacity. The end position is
indicated as well.
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The movement of nodes in a node-link diagram can be represented as trace between
starting and end point. The most straightforward way of showing the movement
of the nodes is to use an arrow with the tip pointing to the end of the movement.
However, arrows only give a sense of direction and strength of a movement and don’t
convey very well that the tip of the arrow is the actual end position of the node.
Besides that it is not clear whether the tip should be at the center of the node, at
the beginning, or at the end. Changing the tip of the arrow into the shape of the
moved node shows the end point of the transition clearly and defines the motion
to be finite. For our prototype, we used findings of Ware et al. [34] stating, that
opacity and width changes of lines can be used to represent direction and speed of
movements resulting in a pin shape. This shape has a circle as end to depict the
final position of the node and gets thinner towards the beginning of the motion (See
Figure 3.4). The pin-shaped movement indicator is used in the prototype.
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(a) Remove edges, move nodes, and create edges.

Josua Krause

0

1

2

3

4

5

6

7

8

91 0

1 1

1 2

1 3
1 4

1 51 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 7

2 8

2 9

3 0

3 1

3 2

3 3

3 4

3 5

3 6

3 7
3 8

3 9

4 0

4 1

4 2

4 3

4 4

4 5

4 6

4 7 4 8

4 9

0

1

2

3

4

5

6

7

8

91 0

1 1

1 2

1 3
1 4

1 51 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 7

2 8

2 9

3 0

3 1

3 2

3 3

3 4

3 5

3 6

3 7
3 8

3 9

4 0

4 1

4 2

4 3

4 4

4 5

4 6

4 7 4 8

4 9

0

1

2

3

4

5

6

7

8

91 0

1 1

1 2

1 3
1 4

1 51 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 7

2 8

2 9

3 0

3 1

3 2

3 3

3 4

3 5

3 6

3 7
3 8

3 9

4 0

4 1

4 2

4 3

4 4

4 5

4 6

4 7 4 8

4 9

(b) Remove edges, create edges, and move nodes.

Figure 3.5: Two ways of splitting a transition into stages of animation phases. (a)
moves the nodes before creating the new edges. In (b) new edges are created before
the movement and therefore make the movement predictable when interpreting edges
as springs. The movement of the two nodes at the top that are not connected to
anything are an artifact of the layout algorithm which tries to position them in the
largest free areas.
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3.3 Staged graph changes

A popular way of showing changes in a dynamic graph is by animating the transition
from one time step to the next (see Section 3.5.6 for the discussion of animation).
This creates the problem that, when done näıvely, edge changes and node changes
are shown at once, making it hard to follow the animation. A common technique
to keep animation understandable is by splitting it into transition stages (see Heer
and Robertson [19]). This can be applied for a graph transition by splitting it into
three phases for edge and node changes. An example for this technique is used by
Bach et al. [2], first removing the obsolete edges, then moving the nodes, and finally
creating new edges. This technique, first used by Friedrich and Eades [14], can be
improved by reordering the stages into edge removal, edge creation, and then node
movement which is illustrated in Figure 3.5. The reordering introduces temporarily
more edge crossings and a worse layout due to nodes having the position of the
previous time step but the graph having edges of the next time step, which was
what Friedrich and Eades tried to avoid. However, the spring metaphor of the layout
strategy becomes more apparent when reordering the stages. With this the newly
created edges pull the nodes to their correct position in the final movement phase.
This makes the actual movement of nodes seem more logical, since a user can see why
nodes are moving and can, to a certain extend, predict where the nodes are going to.
The prototype uses the order: edge removal, edge creation, and node movement.

3.4 Design inspiration

The following preliminary study (Section 3.4.1) and inspiration from traditional
comics splitting complex actions into manageable steps (Section 3.4.2) introduce the
ideas of staging graphs by splitting the overall transition into sub-transitions and
lead to the design of transition panels described in Section 3.4.3.

3.4.1 Preliminary study

Prior to designing a prototype for dynamic graph analysis we conducted a qualitative
study in order to find out what humans consider to be helpful when exploring a
dynamic graph. We asked participants to enrich a given transition of a dynamic
graph, given in the form of small multiples, to show its changes. Four graph-drawing
experts and four non-experts received the graphs printed on paper and were asked to
make visual annotations with pen on the printouts. Each participant got a simpler
and a complex graph randomly chosen from two variants. The simpler graphs were
two variants containing twelve nodes arranged in four groups which changed from
being unconnected to being connected. The larger graphs where taken from the
SIENA data set described in Section 5.3. The transitions were 2 variations consisting
of two time steps. For each task we provided two images: the graph before and
after the transition. For easier navigation the nodes were labeled with numbers
and colored the same in both time steps. Additionally, half of the participants got
an image depicting the graph before the transition enriched with small red lines
depicting the node movement towards after the transition. No restrictions or rules
where given for the execution of the task, neither in use of material nor in use of
time.
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(a) (b)

(c) (d)

(e) (f) (g)

Figure 3.6: Manually annotated graph changes as result of our pen and paper study.
Annotations in Figures (a) – (d) mostly use line variations, while those in Figures (e)
– (g) rely mostly on closures. Further details are given in Section 3.4.1
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In addition to the results we retrieved oral feedback explaining the implemented
ideas. We use those comments to present the following summary. Figure 3.6 gives an
overview of the results. Node movements in (a) are shown by connecting the node
position to its new position, given as shadowed rectangle, with a curved directed line.
The creator of (b) goes further and includes notable node movements (green arrows),
newly created edges (blue arrows), vanishing edges (red strike out lines), and global
movements (big grey arrows) in the result. This visual encoding might be confusing,
since arrows are used for movements (green) and edge changes (blue). On a simple
graph, the combination of edge creation and movement is depicted as contraction
patterns in (c). This method cannot easily be transferred to more complex graphs
since it is limited to contraction and expansion. A different idea is given in (d),
where traces (”spur”) of close nodes are created and their transformation from the
transition is observed. This visual annotation combines very precise node changes
and global patterns, but additional traces might lead to false assumptions about
connections. (e) and (f) are similar. In both, nodes and their new positions are
surrounded by outlines. Additionally, (f) indicates new connections between clusters
with small black lines. In (g) closures are used to annotate movement of sub-graphs
(indicated with arrows) and creation of new edges (with + as label).

The used metaphors can be categorized into two groups: in (a) – (d) line variations
highlight changes, while (e) – (g) uses closures. In all examples node movement
is indicated using different granularity ranging from a very detailed indication in
(a) to high level patterns in (g), or a combination of both, e.g. (b) and (d). This
granularity of changes are revisited in Section 3.4.2 when discussing comics. In the
prototype the user can choose the subjectively best granularity.

Recurring graphical primitives in the examples are arrows which are used to depict
node position changes and the use of closures to summarize changes in sub-graphs.
Those primitives are used in the prototype. The feedback of the study was inspiring
and offered many design variants. However, the large variance also implies, that the
small sample set cannot define a common trend or correlations between user groups.

3.4.2 Comic book metaphor

Comic books served as another source of inspiration. In his book, Scott McCloud [24]
shows how comics can dilate time and explain complex changes. Time can be
stretched in a single frame showing multiple actions that happen sequentially in the
same panel. One the other hand one complex action can be split into multiple panels.
This leads each of those panels showing one part of the action, which are easier to
understand. The overall action can then be inferred from all panels.

In order for a reader to understand the connection of the single actions happening
in panels they have to be arranged intuitively. Although, reading directions are
culture dependent (Japanese comics are read from top-right to bottom-left) all comics
connect frame sequences via proximity and horizontal line-first. For our needs, panels
arranged in a single line from left to right are sufficient. Multiple lines can be used
to present an overview over all panels, though.

Following the ideas behind comics, our prototype allows users to divide a complex
transition of a dynamic graph into smaller, easier to understand sub-transitions. The
results, depicted as comic strip, can be used to gain insights in the changes happening
in the transition and to show those findings to others.
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Figure 3.7: Splitting a process into smaller steps. Every panel shows the minimal
amount of change necessary to understand the story. Note that removing a panel
leaves the story incomplete. ( c© Scott McCloud – Making Comics: Storytelling
Secrets of Comics, Manga and Graphic Novels [24])

3.4.3 Panel design

In the prototype, the user can use both annotations and the comic metaphor to
explore a dynamic graph. While annotations simply can be turned on and off, the
comic metaphor is always present. The prototype shows one transition from a state
to the next state of the dynamic graph. All stages are shown as comic like panels
on the canvas, the first and the last panel being the beginning and final state of
the transition. The user can interact with all panels in between, starting with
the complete transition from start to end. As explained later in more detail (see
Section 3.5.1) a transition can be split into one or more sub-transitions allowing for
a finer analysis of the primitives of the transition. Due to this, the graph is shown in
an inconsistent stage in some panels. In order to emphasize this and give a feeling
for which parts of the node-link diagram can be trusted, the size and translucency
of vertices are changed depending on whether they are at their final position or
not. Nodes that are at their final position or about to be at the end of the current
transition, are shown bigger and completely opaque whereas nodes staying at their
initial position are small and semi-transparent. The same is true for edges.

For sub-transitions, the set of changing, called active, nodes can be highlighted.
This is done by enclosing the nodes in iso-surfaces (see Section 4.3 for a more
detailed explanation). Those closures are also used in the next sub-transition to
show the final position of their original nodes, making all panels readable without
animation. Therefore, color is used to identify the same closure in the next frame.
The color is cycled for each panel so that the actual closure of this panel can always
be distinguished. In order to show the current active color, the bottom part of the
panel is dyed as well. For panels only showing a certain set of changes (e. g. only
creating edges) the top part of the panel is dyed in the color representing the changes
(e. g. blue for creating edges – see Figure 5.2).
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Figure 3.8: The design of transition panels. The symbols at the top are used for
panel operations. The triangle splits the transition into its phases (see Figure 3.10),
the diamond shape symbol is used to move steps around (see Figure 3.12)). The
circle symbol seen in Figure 3.11 is not visible because the panel was created by
an automatic split. The chain symbol between panels is used to merge panels as
described in Section 3.5.3. The pink closure of the nodes show the set of active
nodes matching the bottom color. The green closure is the set of active nodes from
the previous panel showing their final position. The slider at the bottom is used to
interact with animation.

3.5 Interaction

When exploring a dynamic graph interaction is an important part of an application.
Interaction gives the user the possibility to focus on details or get an overview.
Continuing with the comic metaphor interaction is used to build a personalized comic
showing the changes of the graph for either understanding them or presenting them
to others. Comic panels are created by splitting a transition into stages representing
partial transitions. Those stages can either be defined manually by the user (see
Section 3.5.1) or be determined by using heuristics (see Section 3.5.2). Splitting a
transition into its phases, edge removal, edge creation, and node movement is shown
in Section 3.5.2.

To personalize the resulting graph comic even more and undo mistakes done by the
user, panels can also be merged again (see Section 3.5.3). For convenience the panels
can also be reordered (see Section 3.5.4).
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The prototype uses a zoom-able user interface to ease navigation through the shown
small multiples of the given dynamic graph (see Section 3.5.5). The first and the last
of those panels show the actual states of the graph at the beginning and at the end.
The border of those panels are slightly thicker than the other borders in order to
make them distinguishable (see Figure 5.1 and Figure 5.2). Panels in between show
partial transitions of the overall step. The panels can be arranged as a long strip
which makes it easier to interact with them or as a comic-like grid which makes for a
better overview of the panels. Although unlike in a comic the last panel of a row in
the grid gets copied to the beginning of the next row to allow pairwise comparison of
panels consistently (see Figure 5.3).

Focusing on a single node over all panels can be achieved by clicking on the node.
This highlights the node in all panels. Multiple nodes can be highlighted at the same
time.

Animation provides additional interaction with the graph comic (see Section 3.5.6).
Having a higher precision than a small multiples representation the time it takes to
watch a transition lowers the amount of information that can be processed. Therefore,
it is vital to allow a user to always stop an animation and change the progress of
the transition manually. This is achieved by using a slider as shown in Section 3.5.6.
Furthermore, the timing of the animation has to be chosen carefully as seen in
Section 3.5.6. Slowing down the animation at the beginning and the end of the
transition helps anticipating the movement of nodes.

3.5.1 Manually splitting stages

A powerful interaction technique with dynamic graphs is to divide a complex transition
into multiple steps. While this splitting may lead to temporary inaccuracies, it helps
to gain insights by separating the changes into manageable chunks. In the application
this can be done by splitting a transition panel into two or more new panels. Splits
can be user guided or automatically created.
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Figure 3.9: Splitting a transition with a lasso selection.
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Selecting subsets

Splits can be performed on stages of a transition (see Section 3.5.2) or based on node
subsets. We define every node that changes during a transition as active. When
doing a subset based split, we create a transition panel with all nodes remaining
in the beginning state of the original transition except those defined by the subset.
The nodes defined by the subset become active in this panel. In the second panel
the nodes from the subset remain in the end state of the original transition and the
other nodes become active. A node can become active only in one panel. After that
nodes remain in their end state.

The state of a node in this context means its position in the node-link diagram and
the edge configuration. When a node becomes active its edges transition as well.
This means that nodes that have not been active yet may have edges that are not
consistent with the beginning state of the graph.

For user guided node subset splits the user can use lasso selection to define subsets.
The split is then performed on this subset. Only nodes that are active in the given
transition panel are considered by the selection. Subsets containing less than two
nodes or more than n− 2 nodes do not lead to a split.

3.5.2 Automatically splitting stages

In order to speed up the progress of creating an insightful series of transition panels
to explore a dynamic graph automatic splits can be performed. Those work with a
heuristic to create a number of transition panels.

Splitting into phases

A useful split for static images is to split a transition panel into the different stages of
a graph transition: edge removal, edge creation, and node movement (see Section 3.3).
The split creates three new panels that show edge removal in the first, edge creation
in the second, and the node movement in the last panel. This kind of split is useful
when the panels are meant to be printed and therefore animation is not available.
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Figure 3.10: Splitting a transition into its phases by clicking on the triangle symbol.
Clicking on either sideways triangle reverses the action.
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Figure 3.11: Clicking on the circle automatically splits the transition into the
connected components of the conjunction graph G = (V,E0 ∩ E1). Note that this
graph unfortunately has only two of those islands because the left two clusters are
always connected. The split can create an arbitrary number of panels.

Splitting via Clusters

Another automatic split is to use subsets of nodes defined by graph clusters. However,
defining good clusters used for splitting is not easy. Clusters from the beginning
state of the graph or from the end state can be taken. This does not yields good
results if for example clusters change drastically between the step. Gaertler et al.
[15] for example provides a cluster algorithm for dynamic graphs.

A much easier heuristic for clustering dynamic graphs is to detect islands of nodes
that are connected by paths taking only edges that are present in both time steps
i. e. all connected components of the graph G = (V,E0 ∩E1). Using those islands as
subsets for splits gives a first quick overview of the changes of the graph. However,
this heuristic results in too large clusters e. g. when there are persistent edges
connecting two clusters that do not merge.

3.5.3 Merging stages

Complementing the creation of new panels via splitting the user has the ability to
remove panels. The removal is done by merging two panels. Which panels to merge
can be indicated by clicking on a symbol between both panels. For panels that show
the different phases it would be tedious to manually have to merge them one by one,
so all three panels get merged at the same time. Merging any number of panels is
implemented by taking the beginning state of the first panel to be removed and the
end state of the last and creating a new panel with those states.
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Figure 3.12: The first panel gets moved to left of the last panel. Clicking on the
diamond turns it into a square. Then clicking on the diamond of a different panel
moves the panel with the square left to this panel.

3.5.4 Reordering stages

In order to gain more insights in the dynamic graph rearranging the transformation
panels can be useful. For every transition panel the non active nodes are either at
their start state or at their end state. When moving panels around the distribution
of nodes in their start and end state is shifted. This allows a user to see a transition
in a different context and may lead to new insights about the dynamic graph.

Moving a transition panel around also changes the context of the surrounding panels.
The problem of nodes in their beginning state showing edges from their end state
can be mitigated by moving panels around so that the edges of the nodes in the
panel that haven’t been active yet show the correct edges for their state.

Panels that show a single separate transition phase can only be moved with their
corresponding other phases. Otherwise it would be possible to create transition
panels that create a complete inconsistent view on the dynamic graph, e. g. when
only creating edges for nodes that are in their start state.

3.5.5 Zoom-able user interface

The prototype uses a zoom-able user interface to provide the ability to focus on
details or get an overview over all panels. Opposed to the zoom-able user interface
of Perlin and Fox [25] the zoom does not change the displayed content, though.
Navigating the zoom-able user interface can be done in various ways. In addition to
the standard panning and zooming, the user can double-click on a panel to zoom it
to full size so that only this panel is currently visible. Arrow keys can also be used
to navigate between panels when they are arranged as strip. When using arrow keys
the ZUI behaves as if the user double-clicked on the panel left or right of the panel
that is currently hovered by the mouse.
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Figure 3.13: The same scene with different zoom levels. The content of the right
image is the same as the area enclosed by the red rectangle in the left image.

3.5.6 Animation

In addition to a small multiples representation of different transition stages of one
time step of a dynamic graph an animation of those transitions can be used to show
the changes. The use of animation, however, is controversial as discussed by Tversky
et al. [32], and must be handled with care. Tversky et al. mention two principles
that must be obeyed. The Principle of Congruence states that the animated object
should have a natural connection to the underlying conceptual change. This is
the case when animating dynamic graphs whose node positions correspond to the
topology of the displayed graph. The Principle of Apprehension is described as
follows: ”. . . animations must be slow and clear enough for observers to perceive
movements, changes, and their timing, and to understand the changes in relations
between the parts and the sequence of events.” Additionally they encourage the use
of ”. . . annotation, using arrows or highlighting or other devices to direct attention to
the critical changes and relations.” This quote gives support to the approach taken
in the prototype.
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Figure 3.14: The design of the panel containing the initial state of the graph. The
buttons in the top right corner can be pressed. The button consisting of four squares
rearranges the panels in a multi-line comic mode (see Figure 5.3). The encircled
triangle starts a full animation of all consecutive stages. All transitions are performed
in one panel and are executed in order.
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Interaction with animation

In order for animation to be effective it is vital that the user always has full control
over it [2]. This can be achieved by enabling the user to always stop or restart the
animation and showing a slider of the current progress of the animation. The slider
needs to be able to directly set the progress of the animation [13].
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Figure 3.15: Frames of an ani-
mated transition.

In the transition panels the slider for the anima-
tion is always shown at the bottom. Since the
transition is split in multiple phases, edge removal,
edge creation, and node movement, the color of
the slider shows in which phases the progress is
currently in. When the slider is set to the very
beginning of the animation all three phases are
shown at once. This view can be used for a small
multiples only representation. As soon as the
slider is moved to another position or the anima-
tion is started the phases are split up and shown
separately. The edge phases let the new or old
edges fade in or out. The node movement phases
interpolates between the start and end position of
the nodes. The colors on the slider are chosen to
be orange and blue for the edge phases as the edge
colors in those phases. The color of the movement
phase is simply grey.

Moving the slider manually makes it easy for a
user to recognize patterns of cluster movements,
cluster contractions, or cluster expansions.

In order to use animation as complete substitute
for small multiples the user can start a full ani-
mation going sequentially through all transitions
by clicking on a button in the panel of the initial
state of the graph (see Figure 3.14).

Timing and smoothing

The timing of an animation has to be handled
with care. It should not be too fast, otherwise it
is difficult to follow. On the other hand, a slow
animation can take too much time to watch or
lose the focus of the user. For the prototype two
seconds are a good compromise. Furthermore,
smoothing the animation makes it easier to an-
ticipate the movement. Smoothing is achieved by
slowing down the animation at the beginning and
the end, and having the highest speed at the mid-
dle. A quadratic transformation similar to the one
in Dragicevic et al. [12] is used in the prototype.



4. Implementation

The following chapter highlights some challenges that arose during the implementation
of the prototype. Using a straight forward way to implement features often leads to
performance bottlenecks.

Firstly, we will look at the implementation of the zoom-able user interface (see
Section 4.1). In Section 4.1.1 non trivial interactions with the zoom-able user
interface are explained. This includes zooming towards a given point on the screen
and zooming the scene so that only a specific rectangle is visible. After that we
discuss performance boosters for a zoom-able user interface. Namely, avoiding the
computation for rendering non visible items in Section 4.1.2, and using caching
techniques to speed up the rendering of all elements in Section 4.1.3. The presented
implementation techniques allow for scalability of the prototype considering that
many comic panels, showing the same graph in terms of nodes and edges, can be
created by the user.

Section 4.2 focuses on animating a larger number of items without performance losses.
By choosing a format of representing animation that recomputes the current position
from the start and end points incorrect positions are avoided (see Section 4.2.1).
Since animated items do not influence each other the computations for animation
can be parallelized as shown in Section 4.2.2. Locking (see Section 4.2.3) is used
to prevent situations where some rendered items appear at the wrong position
when animation computations are taking place during a redraw. This is especially
inconvenient when reusing positions for drawing nodes and edges connecting to those
nodes. The positions might change and edges appear at a different position than
their corresponding nodes.

In Section 4.3 we will look at the implementation of two closure shape generation
algorithms. Bubble-sets are a standard technique for generating iso-surfaces (see
Section 4.3.1). However, the border is not smooth without significantly increasing
the vertex count and the created sets are not coherent when moving their elements
around. Kelp-like diagrams provide a cleaner looking alternative (see Section 4.3.2).
By imitating the visual style of Kelp diagrams and removing some constraints, those
iso-surfaces are easy to implement while having a clean look. Kelp-like diagrams are
used as standard set closure shape in the prototype.
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4.1 Zoom-able user interface

The main part of the prototype is the zoom-able user interface. The zoom-able user
interface displays a portion of the canvas, which is an theoretically infinite area with
infinite zoom bounded by the precision of floating point numbers. Visible elements
are divided into render items. Render items have a bounding box which defines
the area they can occupy and restricts graphic operations to that area, and can be
organized hierarchically forming a nested two dimensional implicit tree, called scene
graph. The bounding box of a render item can change for every frame allowing for
example ordered groups of render items to add or remove render item children. In
order to make handling of render items easier the offset of the bounding box is with
respect to their parent item and the scaling of the graphic context does not change
when traversing the scene graph.
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Figure 4.1: Bounding boxes of the render items rendered as semi transparent rect-
angles in the current scene. Due to the number of container render items used to
position symbols, the node-link diagram, and the slider, the bounding boxes of a
panel overlay and appear opaque.

4.1.1 Zooming and panning

At any time only a small portion of the canvas is visible. Zoom-able user interfaces
provide two basic operations to change the visible rectangle of the canvas: zooming
and panning. The transformation from screen coordinates (Matrix M) to canvas
coordinates (Matrix C) can be described as

C = S · T ·M

where S is the scale of the canvas and T its offset in the form of

S =

s 0 0
0 s 0
0 0 1

 T =

1 0 tx
0 1 ty
0 0 1


using homogeneous coordinates. With this representation panning is easily done by
adding the movement of the mouse in pixels to T to get an intuitive pan operation.
A zoom operation is a little bit trickier since just changing S always changes the
visible canvas with respect to the top left corner of the screen (the origin of the
screen coordinate system). An intuitive zoom operation can be achieved by adjusting
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the translation of the canvas such that the point under the mouse remains at the
same position. Given px and py as mouse screen coordinates and f as zoom factor,
we shift the offset to the mouse position, apply f , and shift back. The resulting
transformation matrices are:

S =

sf 0 0
0 sf 0
0 0 1

 T =

1 0 (tx − px)f + px
0 1 (ty − py)f + py
0 0 1


Another operation that is not required but very useful, is to be able to zoom in on a
given rectangle. This means that after the operation is performed the given rectangle
is fully visible while being shown as large as possible. The first step is to figure
out the scaling. This can be easily done with the factor f = min {ws/wr, hs/hr}
where w and h means width and height respectively and s is the visible rectangle in
screen coordinates and r the given rectangle in screen coordinates. When taking the
maximum of the values as factor, the screen is zoomed so that the rectangle fills the
whole view but is not necessarily shown completely. Now, setting S to the identity
and T to

T =

1 0 (ws − wr)/2− xr
0 1 (hs − hr)/2− yr
0 0 1


where xr and yr is the top-left corner of r, and the zooming with the factor f towards
the center of the rectangle r yields the correct result. Putting everything in the
zoom formula gives us the following new translation and scale. Note that the zoom
position needs to be in screen coordinates which happens to be in the same scale as
the current canvas coordinates:

px = xr − tx = (ws − wr)/2

py = yr − ty = (hs − hr)/2
t′x = (tx − px)f + px = −xrf + (ws − wr)/2

t′y = (ty − py)f + py = −yrf + (hs − hr)/2

S ′ =

f 0 0
0 f 0
0 0 1

 T ′ =

1 0 ws−wr

2
− fxr

0 1 hs−hr

2
− fyr

0 0 1


4.1.2 Pruning the scene graph

A heavy decrease in performance of drawing the nested set of render items called
scene graph occurs when a fairly zoomed in portion of the canvas is visible. This is
due to the fact that visible items take longer to draw because of their increased size,
in combination with the fact that even though some render items are not visible they
are still drawn. Even when the system provided way of drawing primitives detects
primitives that are fully outside of the clipping rectangle and returns immediately, the
calculations leading to the operation of drawing the primitive are still performed. This
is not necessary. Consider, for example, a non fully visible node-link representation.
The color of the nodes that are outside of the visible rectangle are still computed,
which may be an expensive operation when the color depends on the current state of
the node-link diagram and is dynamically generated.
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In order to overcome the problem of calculating properties of render items that are not
visible, a transformed representation of the visible rectangle is handed through the
drawing routine traversing the scene graph. Since every render item has a bounding
box it can be checked for intersection against the transformed visible rectangle before
attempting to calculate properties for drawing. Since render items nest and a child
bounding box is always fully enclosed by its parent’s bounding box the complete
sub-graph of a render item outside of the view can be skipped.

Calculating the bounding boxes creates a large number of rectangles (at least one
rectangle per render item) every frame. Because of the Java memory model those
rectangles cannot be created solely on the stack and have to be allocated on the heap.
This produces a lot of garbage which leads to more frequent garbage collections.
The garbage collection pauses can cause noticeable freezes during animation or user
interaction and should be avoided. Even though this problem cannot be solved
completely due to the nature of the Java memory model, it can be mitigated by
producing less objects during drawing. This in turn can be achieved by reusing
existing objects during the drawing process. This programming style, however, is
error-prone and should be avoided in non performance critical areas.

4.1.3 Using caching for smaller zoom levels

Pruning the nested set of render items called scene graph does not help to improve
performance when all render items are fully visible. Since every render item is shown
smaller it takes less time to actually draw the objects but the time to compute the
content to draw usually takes more time than the drawing. However, when zoomed
out most objects are static because they are too small to interact with. We can
exploit this fact by rendering items once into an image that we keep in memory,
given that the items are zoomed out far enough. For every successive paint operation
we can use this image to render the item fast. This speeds up the rendering process
significantly when showing many items. When a render item does change, e. g. due
to an animation, it can set a flag so that the cached image is removed and not used
until the animation is over. With many cached render items we quickly run into
a memory problem. Therefore we have to use low resolution images and return to
actually drawing the render item when we are closer than the image allows us to be.

4.2 How to animate many items

In this section I describe how to boost performance when implementing animation.
Animation can be used to have smooth transitions between two stages of the graph.
Animated transition needs to be enabled for visible objects in the scene, e. g. nodes
with their edges, and the camera showing the canvas. Animation of the camera can
be used to e. g. make the transition of zooming in on a panel smooth. Additional to
that it may be useful to schedule certain actions or events for when an animation
has been completed. This allows for example for animating the complete sequence of
panels without making the implementation complicated. Every panel needs only to
know one transition. Showing the complete sequence can be done by positioning all
panels on top of each other and making only one of them visible. After the current
visible panel has completed its transition it is turned invisible and the next panel is
shown with its transition.
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4.2.1 Deciding on a format

Every transition of an object is defined by a start configuration σ0, an end config-
uration σt, and a time span t. The easiest way to represent animated transitions
for objects is then to compute the number of frames of the time span, and how
much the current configuration has to change every frame. However, this method
has some issues. First of all, it is not guaranteed to exactly reach the end point
of the transition after the given number of frames. This can be due to numerical
instabilities when adding relatively small values to the current state. Also, the time
span may not be precisely converted into an integer number of frames if the time
span is not a multiple of frame times which leads to a slightly different timing than
intended. Moreover, this kind of transition is heavily dependent on frame times. If a
frame takes longer to compute or drawn the animation slows down. Which makes it
more difficult to follow elements on the screen, because the eyes have to constantly
adjust to the current speed of the objects. Attempting to have non-linear transitions
with this method is even more difficult.

Another approach on representing transitions is to remember the start configuration
σstart, the start time tstart, the end configuration σend, and the end time tend. tend
can be computed by adding the time span to the start time tend = tstart + t. With
this information the current configuration can be computed any time with σcur =
(1− p) · σstart + p · σend and the progress p = tcur−tstart

tend−tstart
. Note that the progress p is a

value between 0 and 1 as long as tcur is between tstart and tend. If tcur ≥ tend we can
set σcur = σend. This guarantees us that we always end up in the correct position.
Also, when the time span is not a multiple of frame times the timing of the transition
is still correct. When frames take longer to compute or draw the animation is not
affected. Even when lag occurs, after the next redraw the object is at the position
the eye anticipated because of the previous movement of the object.

The animation can be controlled by mapping the progress p to different values
between 0 and 1 which can be used to influence the speed of the transition during
animation. Which mappings to use in order to get an appeasing transition is discussed
in Section 3.5.6.

A drawback of this approach is that the state of an object has to be computed every
time it is accessed. This leads to two problems. When computing the configuration
for objects inconsistencies can occur because the time changes during computation.
This results in out of sync positions for objects or even worse wrong positions of
one object that is accessed multiple times. For example, when the edges of a graph
are drawn the position of the nodes have to be accessed again, which gives slightly
different locations of the nodes with respect to the edges. This problem can be solved
by handing in the initial time of the call to the draw method. However, this leads
to the second problem that the current time influences the state of objects in all
code. So keeping a consistent time over all areas of the code base requires a global
state that is accessible from all objects that have animated transitions. This makes
handling those objects more difficult.

A far more simpler solution to this problem is to have the current state σcur of
an object stored in the object. The state is then updated by an animator thread
whose job it is to compute the current states of all objects that can have animated
transitions. (Note that since the actual value for tcur is controlled by the animator
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thread, time can be stopped or advanced in smaller steps e. g. for creating a series
of screen-shots which otherwise would potentially miss some frames of a transition)
The animator is run at least once per frame. This also gives the opportunity to
have events that are triggered by the end of an animation, because the time when
the event happens is defined. Without a dedicated animator thread, a triggered
animation end event would be executed whenever the first access to the object, after
the animation ended, is made which can be anywhere in the code base (This would
lead to undefined behavior in the case of an exception and the need for locking so
that the triggered event is executed only once).

Not exposing the current time tcur to users of the objects, however, makes it difficult
to start a transition, since the current time is needed to compute the correct times.
Again, directly using the current time could lead to inconsistent animations when
multiple objects are affected. The solution to this problem is to memorize which
actions have been done to an object and execute them, in the correct order, when
the animator thread computes the new state of the object. When doing actions
on an object the impact has to be visible immediately sometimes, so actions have
to directly manipulate the configuration of an object and have to be memorized in
order to be replayed in the correct order by the animation thread. This is necessary
because an animation end event may be triggered when the state was changed.

Having an animator thread with defined times for animation end events can be used
to implement scheduled actions. By creating an animated object that has no actual
changing state an animation can be started with the desired time schedule. When
the ”animation” ends an animation end event is triggered and the scheduled action
is executed.

4.2.2 Fork join pools

Another advantage of having an animator thread to compute object states is that the
actual computations can be parallelized. This is possible since the actual computation
of σcur depends only on the object and the current time. Animation end events have
to be collected and executed after the parallel phase, though, since they usually have
an impact on the surrounding state.

Figure 4.2: The flow diagram of a fork join pool. Horizontal lines are tasks. Tasks
that are above each other can be computed in parallel. A task can be forked and its
result can be awaited.
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Operations on random access lists can be easily parallelized with the use of fork join
pools. A fork join pool is a thread pool that allows tasks to fork, computing both
paths in parallel, and join again when both results are available. This can be used to
split a long task into multiple shorter tasks until a reasonable length is achieved and
computing those tasks in parallel. However, since using a fork join pool has a slight
overhead it is recommended to fall back entirely to sequential computation if the
number of elements in the list is small enough.

In order to avoid a complex mechanism of removing objects from the animator list
weak references can be used. Weak references are references to objects that are
not counted during garbage collection. This means, a weak reference may be null
after garbage collection when the referenced object is not referenced anywhere else.
After the animation computation, weak references that are null can be removed
from the list in order to compact it. This makes handling animated objects easier
because when an animated object is not used anymore it does not have to be removed
manually from the animation thread.

4.2.3 Locking

A drawback of animating and drawing concurrently is that, at the point of drawing,
some objects might already be in the next state and some may still in the current
state. This can lead to weird effects in node-link diagrams where the edges of a node
differ from the actual position of the node. A possible solution to this problem would
be to keep two states in one object. The active state being the one that is used for
drawing and the inactive state being updated by the animator. However, this requires
a global state to determine which object configuration to use and locking for the
global state so that it is not switched during either animation or drawing. Another
solution which requires less complexity and memory is to lock a semaphore when
either animation or drawing is active. The additional waiting time for a drawing
operation when waiting for the semaphore to be freed is negligible. For sufficiently
fast animators the user interface still feels responsive. On the other hand, a complete
split between animating and drawing enables quick redraws of the user interface and
immediate reactions to interaction between two animation frames.

4.3 Iso-surfaces for sets

Using small multiples it can sometimes be difficult to find nodes that have been moved
from one panel to the next. Coloring nodes to indicate their position between panels
removes one visual feature from the repertoire. This feature could for example be
used to mark a given node or show additional information about the dynamic graph
e. g. groups in the graph. Given that only active nodes in a transition panel can
move, another way of showing their position between frames is to enclose all active
nodes of a panel in both the current and successive panel. Cycling through multiple
colors for the closures and using the same color for the same group of nodes makes
it easy to identify nodes that move between panels. At most two of those closures
need to be shown in one panel. The current set of active nodes and the previous set
of active nodes. This also enables to read a small multiples representation without
having to actually search for the nodes that changed between frames.
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Figure 4.3: Set outlines created with the Bubble-sets algorithm.

There are a number of techniques to enclose a set of objects. The easiest method is
to compute the convex hull of the objects. This, however, very likely also encloses
nodes that are not in the set of active nodes. Iso-surfaces that try to minimize the
area not covering any enclosed object are better suitable. Two iso-surface algorithms
are presented here.

4.3.1 Bubble-sets

Well known iso-surfaces are Bubble-sets from Collins et al. [10]. Bubble-sets use
potential fields and attempt edge rerouting to avoid overlaps of different sets. Since
at most two Bubble-sets are shown at once in a panel avoiding overlaps between
those iso-surfaces is not that important. However, by creating an invisible third set
containing the rest of the nodes Bubble-sets can be used to avoid including nodes
that are not active.

Bubble-sets are created by first building creating edges connecting the nodes that will
be enclosed. In the case of graphs, those edges can be used, but it may be necessary
to create additional edges in order to get a connected graph of all nodes in the set.
After that a discrete potential field is created. The potential field is a grid containing
values that is laid over the canvas with a given resolution. For every included node
and the above mentioned edges, the value of the field is increased. For every node
that is not included the value of the field is decreased. By using a smooth kernel
over all objects the created sets are less tight. After creating the potential field it
is converted into a dichotomous field by using a threshold. By walking around the
edge of this field using the marching squares algorithm the actual Bubble-set shape
is created. An open source Java implementation is provided by Krause [21].
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Figure 4.4: Set outlines created with the algorithm for Kelp-like diagrams.

4.3.2 Kelp-like diagrams

Bubble-sets compute more complex shapes than necessary for our use case, since
we do not need extensive overlap avoidance. Also, they are strongly dependent on
the resolution of the potential field which often yields results with jittery outlines.
This effect increases when using them during animated node movement interpolation.
Kelp diagrams by Dinkla et al. [11] (see Figure 4.6) have a less distracting look
and behave more consistent. However, they still are too complex for our use case.
Inspired by this the application uses Kelp-like diagrams.

Kelp-like diagrams firstly also need to create a completely linked set of edges like
Bubble-sets. This is done by using the edges of every graph component induced by
the set of nodes. Those components are then connected by creating edges between the
closest nodes of two components. The algorithm was retrofitted into the Bubble-set
implementation so that the created Bubble-sets can take advantage of the graph
topology. After creating the edge set a thick version of the edges are connected to
create the shape. At the nodes a circle shape is used and smoothed to connect to
the edges. All those shapes combined define the Kelp-like shape (See Figure 4.5
for construction details). By the nature of those diagrams overlaps with non active
nodes are negligible because only nodes that are contained in the set create a circle
in the set. For the hypothetical case that a node is contained in two sets at once
(which cannot be the case in this application) the radii of both circles are changed
such that both shapes are distinguishable.
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Figure 4.5: Kelp-like closure creation. The big dots on the edge and on the circle
are the end points of the bezier curves used to generate the outline. Small dots are
additional control points. Parameters are the angle α and the lengths l and r. The
grey area is the final shape and the thick circle represents the actual node.

Figure 4.6: The original Kelp diagrams. Note the additional complexity of possible
created shapes which is not necessary for our use case.



5. Case studies

In the following chapter the prototype is used to analyze three example graphs.

The first example is a synthetically generated dynamic graph with 19 nodes. It has
three clusters which change their densities and relations to each other. The layout of
the nodes uses techniques described by Brandes and Mader [6].

The second graph depicts face to face contacts of conference attendees at the ACM
Hypertext 2009 conference. The complete data set is provided by SocioPatterns [31].
Contacts were detected via close range radio badges worn by the participants. In
our discussion we will focus on contacts lasting at least 5 minutes that happened
before and after lunch on the first day. The graph consists of 34 nodes being present
at both time steps. The layout was generated similar to the first example.

The third graph is created with the data from the Teenage Friends and Lifestyle
Study of the SIENA project [30]. The network contains snapshots of friendships
between 50 girls ranging from 1995 – 1997. We will discuss the changes from 1995 to
1996. The used layout focuses on stability.
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Figure 5.1: The final graph comic of the analysis of the example graph in Section 5.1.
The transitions of the three major groups are split into sub-transitions. In the first
stage the center group breaks up the former connections to the right group while
gaining an alternative route. The star-like group on the left becomes a cluster in the
second stage. The animation slider of the third stage is moved halfway through the
node position interpolation. Since all edge changes of the right group happened in
the first stage, the last sub-transition only consists of node movements.

5.1 Small example graph

In the small example graph there are three major groups of nodes. The nodes 0, 1,
2, 3, and 4 and 8, 9, 10, 11, and 12 form clusters that are almost fully connected (i. e.
cliques), while the nodes 14, 15, 16, 17, and 18 are only connected through node 14
in the initial configuration of the graph. Naturally, we split the transition to the final
configuration of the graph into three stages, to analyze how those groups change.
When we look at the overall transition we notice that nodes 6 and 5 get connected
to the central cluster so we include them in our split. In the first panel, we can then
clearly see that the two bridges (3–7–9 and 4–5–6–9) get disconnected and remove
the connection of the center cluster to the right cluster. This could be explained by
5 and 6 getting closer friends with 9, 10, and 12 while 5 and 9 start neglecting nodes
4 and 7 respectively. Meanwhile, 8 becomes a friend of 2 reestablishing a connection
between both clusters.

As next step, we split the left group of nodes from the remaining transition. Those
nodes gain connections to each other and 16 even gets connected to 13. This reduces
the importance of 14 while increasing the importance of 13 as connection from the
left cluster to the center cluster.

In the remaining transition there are no edge changes left, since within the cluster
nothing changes and 8 got already connected to 2 in the first panel. Therefore, the
last panel only shows the correction of the positions of the nodes in the right cluster
to represent the new topology of the graph.
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Figure 5.2: The annotated transition of interactions between attendees of the ACM
Hypertext 2009 conference from before to after lunch on the first day as described in
Section 5.2. Node 13 (upper) and 7 (lower) are selected.

5.2 Hypertext Conference Graph

In the face to face contact graph we want to explore how interactions between
attendees of the conference change from before lunch of the first day to after lunch.
Only contacts lasting at least 5 minutes are considered longer conversations and thus
are selected. The graph can be seen in Figure 5.2 which shows the final composition
used in the analysis.

When just looking at the full transition we can already see some facts. Nodes 18 and
17 only interact with each other. Also, the rest of the lower right side stays on its
own. The bottom left sub-graph connects with the main graph after lunch, and the
top right sub-graph makes an acquaintance with node 32.

Nodes 5 and 11 stick out as they obviously know a lot of people. Playing with
the animation slider encourages to select 11, 20, and 24 for a split as they move
together and are constantly connected. Splitting up this sub-transition further into
phases reveals that 11, after being very communicative before lunch, retreats in the
afternoon with 20 and 24. Indicated by the triangle connection between those nodes,
with a high probability, all three are having a discussion with each other.

Turning our focus to node 5 we split using the top left part of the main graph. We
see that 4, 5, and 25 form triangles both before and after lunch. However, before
lunch they only converse together with 10, but not all at the same time since the
four nodes do not from a clique. Node 28 shifts from talking to 15 to talking to 25
which he both already knows. If node 28 would for example be introduced to 25 by
15 they would share a triangle connection in one of the time steps.

Splitting with the last part of the main graph reveals that node 7, who is very active
in the afternoon, was not active before lunch. Speculatively, 7 was running late and
could therefore not be as active in the morning as he was in the afternoon. Moving
the slider around for a bit confirms that node 6 is in fact not connected to 7 before
lunch but rather connected to node 30, which was indefinite due to unfortunate node
placement.
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5.3 SIENA Friendship Graph

The graph comic can be seen in Figure 5.3. By only observing the start and the end
stage of the graph in a traditional manner, we can quickly see that the big lower
sub-graph is split into two separate parts connected only by one node. This node
then also connects to the sub-graph in the upper part of the panel. More smaller
sub-graphs connect also to the main graph.

We use this first observation and split with the top sub-graph first. We now see
where this sub-graph gets connected while the connecting node is still in its initial
position. We do this with the two remaining sub-graphs on the left side as well. The
left sub-graph connects over one node via three edges with the main graph. The
lower connects over one node. So far, only nodes have been of interest that do not
decrease their degree.

Next, we focus our attention on the two nodes in the upper left corner with very
strong movements. Those nodes do not connect to any other nodes, but will perhaps
in later time steps. The movement can clearly be identified as artifact of the layout
algorithm trying to position them in the most empty area.

Now it is time to clear up the main graph. While playing around with the slider we
notice that the cluster bounded by the nodes 9, 10, 18, 28, and 29 has very consistent
behavior. After splitting with it, however, the behavior is still too complex to grasp.
So we split the transition into its phases. Now, we can see that the connections to
the left part of the graph are cut completely and are reintroduced from node 18 via
node 20 and 22. Also, nodes 14 and 15 are cut off and not yet reconnected.

We now turn our focus to the nodes in the upper right part of the node-link diagram.
Node 22 loses its connection to the left part of the graph, which promotes edge
18− 20 to be the last connection connecting both parts of the graph. To confirm
this we check the panel with the remaining changes. Furthermore, we can see that
nodes 14 and 15 from the last split get reconnected to the upper part of the graph.

Splitting with the remaining nodes of the right side shows that node 14 directly
connects the lower part of the right side to the upper part. The other two connections,
10− 25 and 28− 41, which do not change, only connect to the middle part. Note
that 14 previously was a rather unimportant node at the border of the graph.

We can now merge again the individual parts of the right side and look at the
complete transition of this part. This is now easier to follow, since we know where to
look.

Turning to the left part of the graph we first split with 34 and 17. Then we see an
interesting behavior of the rightmost bottom-most nodes of the left side. Splitting
with these leads to a complicated change which we split into its phases. We can now
see that the nodes 16, 21, and 23 change almost their complete neighborhood.

The remaining graph can be well interpreted. Although, due to the collinearity of
the nodes 4, 20, and 31 it is not clear whether 4 and 20 share an edge. We can clear
this up by splitting with node 31 and see that 4 and 20 are in fact only connected
via node 31. Those two edges vanish to the next time step. For further analysis we
merge the stages again.
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Then node 34 connects with node 36 and pulls it down. Node 34 takes a similar role
as node node 14 on the right side of the graph. However, this side has no middle
part, and node 16 is equally important for the connection of this sub-graph.

Looking again at the complete transition from the start state to the end state of the
graph. While appearing to be important in the initial state, node 20 only becomes
important, connecting the left and right part of the graph, in the end state. Node 18
on the other hand has this role in both time steps.
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Figure 5.3: Analysis of the SIENA friendship graph. The panels are arranged as
comic. Rightmost panels are copied to the beginning of the next row to consistently
allow pair-wise comparisons between panels. Node 18 is selected due to its role
mentioned in Section 5.3.



6. Discussion

This chapter discusses the usefulness of the technique for dynamic graph analysis.
Conducting evaluations of the approach is difficult, because it aims on gaining full
understanding of a dynamic graph. However, the usefulness of the prototype was
shown with an analysis of three example graphs in Section 5.

The major advantage of node-link diagrams in graph analysis is the possibility to
easily inspect non-statistical features and relationships beyond simple neighborhood in
a graph (see Section 3.1.2). In dynamic graphs properties like new paths maintaining
the connection of two clusters that would get separated otherwise or changes of
connections within a cluster that may or may not disintegrate the cluster are from
great interest. Those properties cannot be easily expressed as statistical values
and go beyond the scope of local neighborhoods. Evaluating an application against
interesting features of a dynamic graph is difficult.

Tasks like ”Are two given nodes or clusters connected in one of both time steps?” are
easily solvable by looking at both node-link diagrams and checking the connection.
They don’t require the graph to be dynamic either and cover only a small part of the
interesting feature of the dynamic graph while assuming or implying to be embedded
in a greater context.

However, generalizing the task to something like ”Describe how the relations between
two given clusters change” leaves too much freedom for a participant and might lead
to results that are difficult to interpret.

Given that the prototype aims for creating full insight in the changes of a dynamic
graph, evaluating the usefulness of the tool via task focused evaluations seems to
be counter productive. Instead, the usefulness can be shown better by performing
dynamic graph analyses on example graphs. This also reveals the other main
strength of the prototype which is the practicality of being able to present the
acquired knowledge about the dynamic graph to others.

In this thesis I presented a prototype for the analysis of dynamic graphs. The
prototype is capable of presenting a dynamic graph with standard techniques, as
small multiples or using animation to show changes. Also, visual annotations



38

like arrows indicating node movement can be used. Too many visual annotations,
however, can lead to visual cluttering and information overload in a panel which
adds complexity. Therefore, visual annotations can be selectively enabled. Increasing
the pool of visual annotations to pick from, like using strike-out curves to show the
removal of a group of edges, is left as future work.

The prototype utilizes a novel technique of splitting a transition into multiple stages
to ease the understanding of the changes. Those sub-transitions are arranged in
panels which can be reordered or be merged again. I showed the usefulness of the
approach with three example graphs. However, careless use of splitting may lead
to small sub-transitions resulting in loss of context. A good compromise between
context of changes and their complexity has to be found by the user. Automatic
splitting strategies, using heuristics, can overcome those limitations by providing a
good compromise of complexity and granularity. Finding good heuristics for splits
is left as future work, though. Also, sub-transitions may be interpreted falsely
as valid intermediate step of the dynamic graph. However, this is mitigated by
using a different visual representation for nodes and edges in temporary invalid
configurations.
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