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INnstance Explanations

I Words that Al considers important: Predicted:
| GOD ' Atheism
T +
+ | . mean Prediction correct:

this
‘ Koresh
‘ Ps + through
‘ ® e ‘ Document
From: pauld@verdix.com (Paul Durbin)
® Subject: Re: DAVID CORESH IS! GOD!

Nntp-Posting-Host: sarge.hg.verdix.com

Organization: Verdix Corp
Lines: 8

"Why Should | Trust You?" Explaining the Predictions of Any Classifier
Marco Riberio, Sameer Singh, Carlos Guestrin
International Conference on Knowledge Discovery and Data Mining (ACM SIGKDD 2016)



FInding Data Bilases

' Words that Al considers important: Predicted:

' From: pauld@verdix.com (Paul Durbin)
. Subject: Re: DAVID CORESH IS! GOD!
' e Nntp-Posting-Host: sarge.hg.verdix.com
’ Organization: Verdix Corp
Lines: 8

"Why Should | Trust You?" Explaining the Predictions of Any Classifier
Marco Riberio, Sameer Singh, Carlos Guestrin
International Conference on Knowledge Discovery and Data Mining (ACM SIGKDD 2016)



Problem:
Inspecting single instances
does not scale well



Solution:
Aggregating data and explanations



Ground Truth |:] Positive VS. |:| Negative

Prediction ‘:I Positive VS. EI Negative
|:| Correct VS. |:| Incorrect
Solution:

Aggregating data and explanations
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What is the impact of aggregation?

What is the impact of
iInstance-level explanations”

How do those settings affect the
ability to detect biases in the data”
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Questions

Individual models:
e Do you think the predictions of the model make sense”
5 point Likert scale (Not at all — Very much)

 How well does the model perform in terms of accuracy”’
5 point Likert scale (Not much — Very well)

 How much do you trust the model?
5 point Likert scale (Not at all — Very much)

 Why do you trust or not trust this model?
Free text answer
Summary:

Which model do you prefer?
Multiple choice and text answer
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Study

100 participants

4 conditions (25 each):

e Table without Explanations (T/N)

* Table with Explanations (T/E)

* Histogram without Explanations (H/N)
* Histogram with Explanations (H/E)

Random model order
Correctly identified more accurate model

Evaluation metrics:
Model preference (trust)
Blas detection
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Participants Who Trusted the Correct Model

40% 1

30% 1

g 2o

10% 1

0%

T/E H/N H/E

T: Table H: Histogram E: Explanation N: No Explanation
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Participants Who Trusted the Correct Model
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‘It has higher accuracy so should be more trustworthy than the other one. However
some of the results don't make sense to me. Maybe this is just an atypical property
market.”

‘It Is accurate, yet the predictions do not make much sense. Higher quality houses
having a larger amount of low priced houses, percentage-wise? More rooms, area, or
stories resulting in lower prices? The logic does not work out."

larger houses are valued lower than others which are smaller”

20



'If the data says its true, then its true | suppose and its more trustworthy than my
common sense.”

'l feel like the results of [the biased model] where strange even though they where
correct according to the dataset.”

I'm drawn to trusting the model which was more accurate even though it dian't
entirely make sense to me."

25% of the participants who found the bias
did not change their mind!
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Participants Who Detected the Bias
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Benefitting InfoVis with Visual Difficulties

Jessica Hullman, Student Member, IEEE, Eytan Adar, and Priti Shah

Abstract—Many well-cited theories for visualization design staté that a visual representat'ron should be optimized for quick and
immediate interpretation by a user. Distracting elements like decorative «chartjunk” Of extraneous information aré avoided sO @S not
to slow comprehension. Yet several recent studies in visualization research provide evidence that non-efficient visual elements may
benefit comprehension and recall on the part of users. gimilarly, findings from studies related 10 |earning from visual displays in
various subfields of psychology suggest that introducing cognitive difficulties 10 visualization interaction can improve a users
understanding of important information. In this paper, We synthesize empirical results from cross-drscrp\inary research on visual
information representations, providing & counterpoint 10 eﬁicrency-based design theory with guidelines that describe how visual
difficulties can be introduced 10 benefit comprehension and recall. We identify conditions under which the application of visual

characterize effective graph design as 2 trade-off between efficiency and learning difficulties in order 10 provide Information
Visualization (InfoVis) researchers and practitioners with a framework for organizing explorations of graphs for which
o Cr T o are crucial. We identify implications of this view for the design and evaluation of information

a1 Aiarances.



Participants Who Detected the Bias

50% —
Similar performance!

40% 1
30% 4

oo

10% 1

0%

T/N T/E H/N H/E

T: Table H: Histogram E: Explanation N: No Explanation

32



me. Living Area (nu... === Foundation (cat)

[0 Foundation Garage House Style Living Area Mon

] Poured...  Attac... One st 1795 |

] Poured...  Attac... One sto... 1704

n Cinder...  Attac...  One sto... 1700 . Room Count(n... == Overall Quality...
] Poured...  Attac... One st 1561 | | N l Il |
] Poured...  Attac... One st 1752
M Paured One atn

[ Foundaton Garage House Style Living Area Mon VS ] m=. Overall Conditi... T Neighborhood
] Cinder...  Attac... One sto... 1262

] N/A  Attac... Oneand... 1362 | 11l

] Brick... Detac...  Oneand... 1774 | | et
[ Brick...  Attac...  Oneand... 1077 m House Style (c... w Garage (cat)

] Cinder. Det One sto... 1040

] Cinder. Att One sto... 1253

Note that the task was chosen in a way that under
all conditions it was possible to find the bias.

Histograms scale better to larger data
sets or more complex errors in the data.
In tables you have to extrapolate...



| essons Learneag

People trust accuracy (too much).

Aggregating instance-level explanations
significantly helps detecting biases
compared to individual explanations.

Individual Instance-level explanations
may hurt performance.
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Further Work

More targeted studies
to confirm hypotheses

Different results for expert users”?
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