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ABSTRACT

Understanding predictive models, in terms of interpreting and
identifying actionable insights, is a challenging task. Often
the importance of a feature in a model is only a rough esti-
mate condensed into one number. However, our research goes
beyond these naive estimates through the design and imple-
mentation of an interactive visual analytics system, Prospec-
tor. By providing interactive partial dependence diagnostics,
data scientists can understand how features affect the predic-
tion overall. In addition, our support for localized inspection
allows data scientists to understand how and why specific dat-
apoints are predicted as they are, as well as support for tweak-
ing feature values and seeing how the prediction responds.
Our system is then evaluated using a case study involving a
team of data scientists improving predictive models for de-
tecting the onset of diabetes from electronic medical records.
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INTRODUCTION

In the era of data-driven analytics, there is growing demand
to generate and deploy predictive models in a variety of do-
mains so that the patterns unearthed from massive amounts of
data can be leveraged and converted into actionable insights.
Predictive modeling is defined as the process of developing
a mathematical tool or model that generates an accurate pre-
diction [24]. As an example, in healthcare, if one can model
the data characteristics of patients who will likely develop di-
abetes, healthcare institutions could deploy such a model on
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their patient databases, and automatically flag high risk pa-
tients to clinicians to make sure they are being treated appro-
priately. However, building such models on noisy, real-world
data is quite challenging.

Data scientists often turn to machine learning, where the
goal is to create predictive models based on information au-
tomatically learned from data with ground truth. However,
these machine learning techniques are often black-boxes and
may be selected based only on performance metrics such as
high accuracy scores, and not necessarily based on the inter-
pretability and actionable insights of the model. There has
recently been a variety of techniques to inject humans-in-
the-loop when building predictive models based on machine
learning, from interactive training [1] to interactive feature
selection [23]. However, interactive systems to effectively as-
sess and evaluate the interpretability and actionable insights
of a predictive model that go beyond simple accuracy metrics
is still lacking. We believe bringing humans into the loop at
this stage can possibly lead to better models and consequently
improved outcomes when the models are deployed.

Our research aims to support data scientists to go beyond
judging predictive models solely based on their accuracy
scores by also including model interpretability and action-
able insights. Towards this goal, we developed Prospector, a
novel visual analytics system designed to help analysts better
understand predictive models. Prospector leverages the con-
cept of partial dependence, a diagnostic technique that was
designed to communicate how features affect the prediction,
and makes this technique fully interactive. Prospector also
supports localized inspection, so users can understand why
certain data results in a specific prediction, and even lets users
hypothesize new data by tweaking values and seeing how the
predictive model responds. We also demonstrate, through a
case study, how the system can lead to important insights for
clinical researchers building models that try to predict patient
outcomes based on electronic medical records.

Concretely, our contributions include:

e A design and implementation of an interactive visual an-
alytics system, Prospector, for assessing the interpretabil-
ity and actionable insights of trained predictive models by
supporting:

— Interactive partial dependence diagnostics to under-
stand how features affect the prediction overall. There
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are novel visual representations, sampling strategies,
and support for comparing multiple models.

— Localized inspection to understand how and why spe-
cific data points are predicted as they are. Users can
interactively tweak feature values and see how the
prediction responds, as well as find the most impactful
features using a novel local feature importance metric.

e A case study of data scientists using Prospector to im-
prove predictive models for detecting the onset of diabetes
trained from electronic medical record data.

MOTIVATION

Machine Learning for Predictive Modeling

Data scientists often use machine learning to create predic-
tive models based on known properties of training data, which
acts as the ground truth. Machine learning algorithms typi-
cally work in two phases: the training phase and the predic-
tion phase. In the training phase, parameters of the model are
learned using training data. The prediction phase then com-
putes predictions using the trained model. Below, we describe
several machine learning algorithms that are commonly used
and also utilized in the case study.

A decision tree is one such algorithm, which is a tree whose
nodes are rules that decide how to proceed down the branches
of the tree, according to the range of values for a specific fea-
ture. The decision making starts at the root of the tree and
leaves carry the prediction results. Decision trees are popu-
lar in machine learning as they allow data scientists to model
arbitrary functions. However, the more nodes a tree has, the
harder it is to understand the reasoning behind outcomes. Lo-
gistic regression is another popular algorithm that is easier to
understand, as features can only positively or negative influ-
ence the prediction, and the rate of influence is fixed. This
is achieved by defining a hyper-plane in the feature vector
space, where the outcome of the prediction depends on how
close to and on which side of the hyper-plane a point is.

Another popular algorithm is random forests, which combine
the output of multiple decision trees. A random forest is an
example of an ensemble model, which combines the output
of several weak machine learning models to yield an overall
better result with less bias and variance than a single strong
model. However, this makes ensemble models less inter-
pretable since each weak model has only a small influence
on the outcome.

Predictive Modeling in Healthcare

In order to make our contributions concrete, we utilize a mo-
tivating scenario that emerged from our case study. The case
study involves a team of five data scientists interested in us-
ing predictive modeling on a longitudinal database of elec-
tronic medical records. The research team has a background
in healthcare analytics and their database contains 4,000 pa-
tients from a major hospital in the United States. The team
is interested in building a predictive model to predict if a pa-
tient is at risk of developing diabetes, a chronic disease of
high blood sugar levels that may cause serious health compli-
cations.
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Figure 1. An illustration of how partial dependence is computed for the
feature “Glucose”. On the left are four patients’ original feature values.
In the middle, the “Glucose” values are all changed to 100, and the cor-
responding predictions change. Similarly, on the right, the “Glucose”
values are all changed to 130, and again the risks are different. This
demonstrates the impact of the “Glucose” feature on risk prediction.

The team of data scientists manages to develop a highly accu-
rate predictive model for detecting patients at high risk of de-
veloping diabetes. They determine its effectiveness by mea-
suring the common metrics used by predictive models (e.g.,
accuracy and AUC scores [24]). They also followed the best
practices of building predictive models. They worked with
clinical researchers to properly define cohorts of patients with
diabetes (cases) and matched patients without diabetes (con-
trols) by thoroughly searching through the electronic medical
records. They constructed features based on lab tests, diagno-
sis codes, procedures, demographics, and patient conditions
from the records. They used cross-validation to ensure their
models were robust. They used a variety of state-of-the-art
feature selection methods to utilize the most informative fea-
tures in the model while keeping it as generalizable as possi-
ble. And they used a variety of effective classifiers to do the
training and evaluation. After trying various combinations of
these techniques, the model with the highest accuracy metrics
was selected and presented to the appropriate stakeholders at
the healthcare institution.

Their stakeholders were impressed by the high accuracy
scores of the model. But when they asked the data scientists
for more information about what was inside of the model,
the reports only described the top features of the model and
their associated “importance” weights. The stakeholders rec-
ognized many of the feature names, and it appeared to make
clinical sense. However, there were also some surprising ones
that led to intellectual discussions. But the stakeholders de-
manded to know more. They wanted a clearer sense of how
certain features impacted the prediction. Furthermore, they
wanted to understand how the values associated with the fea-
tures (e.g., the results associated with lab tests) impacted the
prediction. They also were curious to interact with the model
to test hypotheses about how the model would react to hy-
pothetical patients of interest. When confronted with these
questions, the data scientists shrugged. In the data scientist’s
defense, it is difficult to summarize and interpret complex
models and there are few tools and techniques available to
address the stakeholders’ requests. So now the stakeholders
are faced with a hard decision: do they deploy a predictive
model in their institution that appears to have high accuracy
but is also somewhat of a black-box?
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Figure 2. Partial dependence plots. The black curve shows the average
predicted risk (probability of a certain outcome) if for all rows in the
data the value of this feature was the given value of the horizontal axis.
The red line shows the average predicted risk for the original data. The
vertical line shows the mean of the observed values and the histogram
below the plot shows the distribution of observed values. Dotted lines
show the range of one standard deviation around the mean values.

Although this scenario is motivated by our case study, our
other projects and interviews suggest these are not atypical
requirements. Our work is motivated to support the develop-
ment of more comprehensible predictive models.

Partial Dependence

The most widely used technique to understand the relation-
ship between a feature and a prediction is by computing par-
tial dependence [14, 16]. The idea of partial dependence plots
is to treat predictive models as a black-box and observe how
changes in the input affect prediction outcomes. When in-
specting only the partial dependence of one input feature at
a time, Formula (1) can be used to compute a partial depen-
dence plot.

N
1 :
pdps(v) = N Zpred(x,-) with x;r = v 1)

N is the number of rows in the input matrix x, pred is the pre-
diction function that takes one input row, a feature vector, and
returns an outcome probability, and f is the feature used to
compute the partial dependence plot. The formula computes
the average outcome over all input rows while changing the
value of feature f to the input value v for each row x;. The
original input data is kept fixed. This allows for observing the
influence of f on the predicted probabilities.

In order to make this function more concrete, consider the
illustrative example in Figure 1, where each input row is a
patient, and each column is a feature. The last column rep-
resents the output of the predictive model that predicts if a

patient is at low-risk or high-risk for developing diabetes.
In Figure 1la, the patients’ original feature values (age, BMI
(Body Mass Index, a standard way to quantify obesity), and
glucose level (a standard way to determine diabetes)) are
shown. If one wants to examine the impact of the glucose fea-
ture on the prediction, partial dependence can be applied by
keeping all of the other features (age, bmi) as they were, but
fixing glucose to a set of fixed values to see how that feature
impacts the prediction. For example, in Figure 1b, the glu-
cose values (highlighted in yellow) are fixed to 100, which
yields predictions of only 1 patient being high risk, instead
of the original 2. Conversely, in Figure lc, glucose is fixed
to 180, and 3 patients are predicted to have high risk. Thus,
there appears to be partial dependence of glucose on the pre-
diction.

Partial dependence is typically visualized as a partial depen-
dence plot, as shown in Figure 2,which is a line graph that
plots the fixed values for the target feature on the x-axis, and
the corresponding predicted risk (probability of a certain out-
come) on the y-axis.

RELATED WORK

Motivation for Interpretability

Modern machine learning algorithms are able to create more
reliable and precise models but they are increasingly complex
and come with the price of being harder and harder to inter-
pret (Breiman [7]). This inverse relation of understandability
versus expressiveness of a model introduces the need to find
ways to improve the interpretability of complex models to
overcome this disadvantage. Lim [28] asks questions such
as “Why did X happen?”, “Why not Y?”, “What happens if
I do Z?”, and “How do I make X happen?” to explain com-
plex mechanisms like machine learning models. Our system
allows users to interactively ask and answer such questions.
Kulesza et al. [25] use explanatory debugging by conveying
how a model came to its prediction in order to be able to cor-
rect mistakes. On the other hand, Patel ef al. [33] use multi-
ple classifiers to better understand input data. Steeg and Gal-
styan [45, 41] use total correlation to build a hierarchy of fea-
tures explaining their role in the data.

Algorithm Specific Model Visualization

In the past, research has primarily focused on understand-
ing and interacting with specific machine learning algorithms.
Often the focus is on the internal weights of the trained mod-
els. For Bayesian networks, showing probabilities of the
nodes (Becker et al. [5]) and how the input is propagated
(Correa et al. [18]) has been used. For Support Vector Ma-
chines, projection techniques (Caragea et al. [8]) and Nomo-
grams (Jakulin ef al. [17]) to see the “cut” in the data points
were utilized. Visualizing and interpreting the graph of a
neural network has also been used by Tzeng and Ma [43].
Kim et al. [22, 20] introduce graphical models that allow for
interpretability of its features. [20] use a colored matrix of
features by category to show distinguishable features com-
puted by their model. Caruana et al. [9] use high-performance
generalized additive models (GA’Ms) that allows visual in-
spection of the influence of its input features on the outcome
much like partial dependence.



Model Result Visualization

However, showing only internal, algorithm specific weights
is often not enough. Plate er al. [36] and Olden [31] show
how input features influence the outcome of neural network
classifications. Xu et al. [46] interprets the graph of a neural
network used for image classification to retrieve which part of
an image was responsible for a specific classification result.
These techniques aim in the same direction as partial depen-
dence but are limited to only neural networks. They cannot
be used to support the ability to compare different machine
learning models across algorithms.

Having access to the internals of a machine learning algo-
rithm also allows direct interaction with the models and to
improve them on the fly. BaobabView (van den Elzen and
van Wijk [44]) offers interactive decision tree construction.
Steed et al. [40, 39] guides regression model creation by
enhancing interaction with the input data. EnsembleMatrix
(Talbot et al. [42]) allows users to combine already computed
classification models to build ensemble models. Some recent
interactive machine learning tools [1, 2, 3, 4, 19, 21, 26, 29,
32]) are more algorithm agnostic, but depend on general per-
formance measures like confusion matrices, area under ROC
curve (AUC) measures, result distribution of data points, and
feature weights according to model independent statistics.

Frank and Hall [13] use 2D projections of the data to show re-
sults for multiple classification algorithms, as well as Rhein-
gans and desJardins [37] with self-organizing maps.

Probing Models

Partial dependence was proposed by Friedman [14] for ana-
lyzing gradient boosting models and has since been used for
other models as well (e.g. Ehrlinger [12] uses partial depen-
dence to analyze the behavior of random forests in the R pack-
age ggRandomForests).

Cortez and Embrechts [10, 11] and Kim ef al. [22] use sensi-
tivity analysis to analyze and compare machine learning mod-
els of different algorithms. Sensitivity analysis is similar to
partial dependence except that it uses a few base vectors (usu-
ally the mean, median, or quartiles of all observed values)
instead of computing the probabilities over all input points.
This method is faster than partial dependence but may miss
critical details about the prediction function especially if the
function is strongly non-linear.

Goldstein et al. [15] extends the idea of partial dependence by
using Individual Conditional Expectation (ICE) plots which
show one line for each row of the input data. We found, how-
ever, that this often clutters the plots too much and makes
them harder to interpret. We experimented further with show-
ing standard deviations and quartiles of the partial depen-
dence line but discarded this approach since the spread of the
partial dependence results is always expected to be large un-
less one feature dominates the classification significantly and
is able to solely change the classification even for the furthest
data points.

By not restricting ourselves to sampling only the observed
input space, our approach on partial dependence enables a
deeper analysis of the machine learning model. Furthermore,

accepting the costs of computing partial dependence over all
input points yields proper results even for highly non-linear
models, while also not overwhelming users with too much de-
tail. This is strengthened even further by our novel approach
of using implementation details of the inspected models to
improve the sampling and the representation of the results.

SYSTEM

In order to integrate partial dependence and localized inspec-
tion into our pipeline we propose Prospector, a web-based in-
terface. The server side of Prospector can load any machine
learning model accessible via python, or integrate with ex-
isting predictive modeling pipelines such as PARAMO [30].
Although this paper demonstrates the system on clinical data,
the tool is able to handle predictive models for other domains.
For example, the tool has also been used with exploring mod-
els that predict real estate prices, as well as classic data sets
from the UCI Machine Learning Repository [27].

In this section, we first describe Prospector’s novel enhance-
ments of partial dependence plots. Then, we describe how
Prospector leverages partial dependence to support localized
inspection. Finally, we describe the workflow of how these
techniques are integrated into Prospector’s Ul

Partial Dependence Plots

Partial dependence is typically visualized as a partial depen-
dence plot, which is a line graph that plots the fixed values for
the target feature on the horizontal axis, and the correspond-
ing predicted risk (probability of a certain outcome) on the
vertical axis. In Prospector, we enhance the plot by adding a
red reference line with the average predicted risk of the model
on the original data, as shown in Figure 2. In addition, a black
vertical line indicates the average observed value of the input
data for the current feature. Both reference lines are accompa-
nied with dotted lines showing one standard deviation in both
directions from the mean value. To help with validating in-
sights and assigning importance, a histogram of the observed
values in the original data is also shown below the plot.

Sampling Partial Dependence

One of our core contributions is the ability to effectively treat
partial dependence as a black-box for inspection. However,
naively treating the predictive model as black-box may lead
to inaccuracies in the generated plot. Often only observed in-
put values are used for sampling which leaves the prediction
function for other values undefined, even though those values
might be of particular interest for understanding the internals
of the model. Furthermore, the interpolation between those
sample points may ignore inherent features of the prediction
function. For example, Ehrlinger [12] shows the usage of
partial dependence plots via random forest models. The pre-
diction function for those models can only change between
thresholds appearing in the nodes of the trees. For all other
values the prediction remains constant. However, the inter-
polation between sample points used in the examples is poly-
nomial. This leads to the following misrepresentations of the
prediction function: (i) some sampled prediction values are
not included in the interpolation; (ii) the interpolation is a
curve where it should be a constant which alludes to values
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Figure 3. Different sampling strategies for partial dependence plots. The leftmost plot uses a naive sampling which misses the dip in the predicted
risk for a Glucose value around 105. Using the thresholds of the trees in the random forest the middle plot shows all details of the displayed model.
The rightmost plot simplifies this by detecting co-linear points and summarizing them into lines improving readability. The dip in the predicted risk
is due to imputation of missing values to the mean of the observed values. This increase in local noise shifts the prediction towards the overall average
predicted risk (the horizontal red line). Most patients have never had their Glucose value measured.

that are impossible to achieve with the prediction function;
(iii) steps are interpolated as curves which gives the impres-
sion of a smooth ascent of values when it should be a series
of sudden jumps.

We overcome those inaccuracies by acknowledging inherent
properties of the prediction functions of our models. This
is only possible by leveraging the internal design of model
algorithms and therefore, Prospector must more effectively
sample the range of the input features. For example, in de-
cision tree or forest models, where the predicted risk will
not change between thresholds of the nodes of those mod-
els’ trees Prospector utilizes the knowledge that the plot will
be a step function by only sampling values at the thresholds
of the given feature to accurately compute the complete plot
(see Figure 3). It does this by inspecting the decision rules in
the nodes of the model to retrieve those thresholds.

However some models, such as random forest models, pro-
duce a large number of points where the outcome might
change which leads to a cluttered plot that impairs readabil-
ity. One solution to this is to simplify the generated plot by
finding almost co-linear points and reducing them to the end-
points. Such visual optimizations support more comprehen-
sible plots that are easier to read while still being accurate
representations. Other machine learning algorithms may not
require such optimizations.

Prospector also enhances partial dependence plots by taking
into account the context of the original data values. For ex-
ample, certain features only make sense as integer values (e.g.
the number of times a laboratory test was performed) and it
does not make sense to show non-integer values in the plots.
Such features can be heuristically detected by inspecting the
set of values in the original data set and Prospector restricts
those features to only have integer values as input. Similarly,
in the partial dependence plot, only integer values are com-

puted. Furthermore, for predictive models using step func-
tions the plot is horizontally shifted by 0.5 so that jumps hap-
pen between values. This eases reading the actual value at
the integer points. Even though this improvement leads to a
slight misrepresentation of the prediction function for non-
observable values the readability of the plot is significantly
improved to support user tasks. For non-integer data types,
these optimizations are not necessary.

Local Inspection

Our second core contribution is leveraging our implementa-
tion of partial dependence to support the user task of local
inspection. Users can use Prospector to inspect specific data
points of interest and see how the models predict how they
behave. In addition, if the users are curious about how a par-
ticular data point’s risk might change if it had different values,
a user can explore this as well. The idea of localized inspec-
tion is illustrated in Figure 4 using our running example of
diabetes prediction. At the top, the original patient’s feature
values are shown, along with the patient’s original predicted
low risk of having diabetes. Suppose the analyst was curious
to see how the patient’s risk would change if his BMI was

Glucose
Risk

Age
BMI

Figure 4. This illustration provides an explanation of how local inspec-
tion works. On the top row are the patient’s original feature values and
the corresponding prediction. On the bottom three rows, users changed
certain values of the patient, highlighted in yellow, and such values im-
pacted the prediction.



demographic (age) - r: 0.15258
1.0

0.9 =

0.8
0.7
0.6

0.5

0.4 {
0.3 N

0.1

0'950 35 40 45 50 55 60 65 70 75 80

sy

| i

[l Current State

Al
[l Original Score

age_at_enrollment (staticSum)

mhmmuﬁ\ﬂWlWﬂﬂwwm\_

age_at_enroliment (staticSum) demographic (age) (0.153)
< (55) | >
30 35 40 45 50 55 60 65 70 75

Predictive Risk Color Key:
[ |
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 5. The same feature shown as line plot (top) and partial depen-
dence bar (middle). Color indicates the predicted risk for the outcome.
The color mapping is shown at the bottom.

increased to 35. Localized inspection allows users to inter-
actively change this value, and see the corresponding predic-
tion. In order to streamline this kind of exploration we fully
compute the predicted risk for all values of BMI similar to
partial dependence. As seen in Figure 4 we do this for all fea-
tures independently yielding local partial dependence plots
for each feature using a single input row.

Partial Dependence Bars

In order to increase interactivity, encourage exploration, and
display a larger number of features at once, we use a novel
visual encoding, partial dependence bars, a color bar rep-
resentation of a partial dependence plot, shown in Figure 5.
The horizontal axis of a partial dependence bar represents the
range of values of a feature, and the color at a given position
represents the predicted risk for that value. Color is mapped
to a three-point color scale, where blue represents low risk,
yellow represents medium risk, and red represents high risk.
As these bars are meant to aid local inspection, the current
feature value of the datapoint being inspected is positioned
along the horizontal axis and annotated as a circular label.
Users can drag this circular label left or right to inspect how
changes in the feature value affect the predicted risk as well
as the local partial dependence of other features.

Local feature importance

The fourth novel contribution of our research is a technique
to simplify the exploration of the predicted risk space by au-
tomatically finding features where a small change in value
yields a significantly large change on the predicted risk.

While manipulating values of specific features allows users
to test hypotheses on how features of interest may impact the

prediction, if users wish to simply understand how to most
impact the prediction, manipulating features one-by-one to
test impact is an inefficient process. Instead, Prospector can
employ local feature importance, a novel technique that com-
putes the impact of a given feature on the model according to
the current values. This localized feature importance comes
in two different flavors: as a feature importance number and
as actual suggestions for value changes.

A straight-forward way to define a localized importance of
features is to look at the range of possible predicted risks the
feature can create starting from the given data point. For-
mula (2) computes the local importance / of a given feature
f for the given feature vector p. It sums up the entirety of
changes in outcomes for all values v for feature f. The out-
come changes are weighted by w the likelihood of changing
the value from p, to v. p* is the modified feature vector where
its value for f is set to v and pred is the prediction function.

Ir(p) = f [pred(p*) — pred(p)] w(v, py)dv  (2)

00

with p} = v and p, = p, for g # f

wv, py) = ! exp (— v pf)z]

In order for different features to be comparable, w takes the
distribution of values in the input data into account. In fea-
tures with a high spread, a larger change is more likely than
in a feature with a narrow value range. We model the likeli-
hood of the change using a normal distribution with the ref-
erence value py as mean and the standard deviation oy of the
observed values of f as standard deviation. Ordering the fea-
tures according to this local importance yields features that
are likely to decrease the predicted risk first, then features that
have a low impact on the predicted risk, and finally features
that are likely to increase the predicted risk.

Instead of computing local feature importance for all possible
changes, it is more practically useful to compute the impor-
tance according to the most impactful change for a feature.
An impactful change is the smallest change needed to have
the largest change in the predicted outcome. Note that this
is different from the slope of the function since an impact-
ful change might be after a valley or ridge. Again, in order
to have comparable results, the distribution of values in the
input data is taken into account.

argmax [s [pred(p") - pred(p)] w(v,pp)]  (3)

Formula (3) finds the most impactful change of a feature. s is
either 1 or —1 depending on whether to search for the largest
increase or decrease. All other variables are the same as in
Formula (2). The changes yielding the highest impact can be
interpreted as suggestions for changing a data point.
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Figure 6. Comparison of three machine learning models on the number
of measured BMI values. The two regression models (logistic regression
in blue and regularized logistic regression in green) can express only
a single slope (downwards or upwards) whereas the random forest in
red can model the strong decrease in predicted risk going from no BMI
measures to one measure as well as the later increase again if a patient
has several BMI measures. The random forest is more expressive, but
the distribution of input values in the histogram below the plot hint the
model might be overfitting as most of the observed values are 2 or less.

Comparing Multiple Models

Prospector also supports plotting multiple models in the same
plot. As the input domain and the output range are the same
across different machine learning models on the same data,
partial dependence plots can also be used to compare multiple
models as shown in Figure 6. This is useful for comparing
the expressiveness of models and seeing which models are
possibly under- or over-fitting the input data.

Workflow

In order to support the workflow of clinical researchers, as de-
scribed above in the Motivation, Prospector’s Ul is organized
into three main tabs: patient selection, patient inspection, and
partial dependence plots.

Patient Selection

The patient selection tab allows users to find patients they
may want to inspect, based on their ground truth (e.g. whether
they actually had diabetes) and their predicted risk (e.g. as-
sessed likelihood by the predictive model of having the dis-
ease). Prospector provides a visual summary of the patient
population by providing a patient selection visualization. The
visualization, as seen in Figure 7, consists of two columns di-
viding the population according to their ground truth (case pa-
tients being those actually diagnosed with diabetes and con-
trol patients being not). Each column is then separated into
bins of predicted probabilities in steps of 0.1 which can be
clicked to select the group of patients fitting those criteria.
For instance, if a case patient was predicted with a low risk
score, that patient would appear in the top of the right column.
If a bin is too small to provide a clickable area, a box at the

side of the column is displayed to allow choosing even small
populations. The selected population is then shown next to
the visualization with the individual prediction results shown
for each entry.

In order to get more details about patients before selecting,
users can hover over a patient in the list and see a summary
for the patient, as shown in Figure 8. In addition to the pre-
dicted risk and the ground truth, the interface shows the top
5 most impactful features, for both increasing and decreasing
predicted risk, according to the local feature importance de-
scribed above. For each impactful feature, the original data
value is shown as well as the suggested change and what the
resulting predicted risk would be if such a change was made.
This summary provides a preview of how amenable a partic-
ular patient’s predicted risk is to changing and which features
are mostly responsible for their current predicted risk.

Patient Inspection

After users select a patient of interest, the UI switches to the
patient inspection tab with the selected patient’s data loaded,
as shown in Figure 9. All of the features’ partial dependence
bars are shown in a scrollable list, with the patient’s feature
values selected with circular labels. Users can drag the circu-
lar label to change the value of any feature and see the pre-
dicted risk change in real-time. Users can also select a feature
and see the corresponding typical partial dependence plot of
the feature. In this plot the local partial dependence of the
current patient is shown as black curve and the global partial
dependence of the whole population is shown in gray. The
partial dependence plot is also clickable and users can change
the feature value here as well, changing the black vertical line
that, in this plot, shows the current value.

Users can change the sort order of the partial dependence bars
by using the buttons at the top. In addition to sorting by the
feature weight and relevance as determined by the predictive
model, users can also sort according to our local feature im-
portance and impactful changes as described above. If im-
pactful changes are chosen as the sort order, the suggested
changes to each feature are indicated with a white circular la-
bel in the partial dependence bar, as shown in the bottom left
of Figure 9.

Often after analysts have inspected a particular patient, they
may wish to find other patients similar to them to see how
they react to the predictive model. If users wish to find pa-
tients similar to the one they are inspecting, they can click
on the “Neighborhood” button and Prospector will automati-
cally find the closest patients to the current set of values using
feature-wise Euclidean distance. This similar set of patients
are then used as the population in the patient selection tab that
users can navigate.

Partial Dependence Plots

If users wish to browse the global partial dependence plots of
a feature of interest, they can navigate to the third tab. Users
can view multiple models at once by using a combo-box at
the top of the user interface to select the models they wish to
view in the plot. Each selected model is assigned a unique
color using a quantitative color scale, and a color-coded key
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Figure 7. The interface for selecting a patient. The left side shows the
distribution of patients within different ranges of predicted risk. The
columns indicate the ground truth. On the right side a list shows the
patients of the currently selected range.

is displayed beneath the plot. If more than one model is se-
lected, the red “Avg. Score” helper line is not shown. Users
can also filter the global population to a subset population of
interest by using a predicted probability bin or the “Neigh-
borhood” of a patient in the patient selection tab. This alters
the plot accordingly allowing for a more focused analysis for
e.g. mispredicted patients, outliers, or patient neighborhoods.

CASE STUDY: PREDICTING DIABETES

In order to evaluate the utility of Prospector, we chose to
conduct a case study utilizing a team of real data scientists
building their own predictive models on their own real-world
datasets to demonstrate its effectiveness at reaching insights
in practice. There is a growing belief in the visualization
community that traditional evaluation metrics (e.g. measur-
ing task time completion or number of errors) are often in-
sufficient to evaluate visualization systems [6, 35, 38]. Using
the evaluation methodology developed by Perer and Shnei-
derman [34], we conducted a 4-month long-term case study
with a team of five data scientists interested in using predic-
tive modeling on a longitudinal database of electronic med-
ical records. The research team is interested in building a
predictive model to predict if a patient is at risk of developing
diabetes using a database of 4,000 patients from a major hos-
pital in the United States. Due to sensitive data agreements,
this team wished to remain anonymous.

The initial phase of the case study involved understanding the
data scientists’ current tools and needs. They presented their
typical results after building predictive models, sharing sto-
ries of success when their stakeholders were pleased, as well
as examples of less successful results when their stakeholders
demanded answers they couldn’t provide with existing tools.

Patient: 3530 Truth: @ Original: 0.42753

Decreasing Risk:

Feature Current Suggested Change
bmi (count) vital (bmi) 0 1(/0.08021 )

eGFR lab 59.18887 59.59549 ( 0.23110 )
bmi vital (bmi) 28.27873 28.23937 ( 0.27954 )
eGFR (count) lab 0 1( 0.28705 )
Calcifediol (Vit D) (25-0...0 1(0.31857 )

Increasing Risk:

Feature Current Suggested Change
BUN (count) lab 0 1(10.77246 )
Peripheral Vascular Dis...0 1('0.68666 )
Uric Acid (count) lab 0 1(0.64202 )

Calcium lab
Carbon Dioxide lab

9.37486 9.38749 ( 0.59175 )
26.56109 27.35469 ( 0.59025 )

Figure 8. The summary of one patient. The header line indicates the
patient id, the ground truth, and the predicted risk. For both decreasing
and increasing the predicted risk the top 5 most impactful features are
shown. Each feature shows its current value and the suggested change
with the highest impact along with how the predicted risk would change.

Their use cases and experiences shaped the design and re-
quirements of the tool.

After the tool was developed, there were bi-weekly meetings
with the data science team in which we discussed the current
interface and identified shortcomings of the interface, neces-
sary Ul enhancements, and components that were not worth
developing further. Some of the elements originally proposed
turned out not to be useful, such as overlaying distributions of
risk in the partial dependence plots or using ICE plots [15].
However, focusing the meetings on examining the team’s pre-
dictive models together using Prospector allowed us to deter-
mine which elements helped improve both the models and
their comprehension of the models.

Understanding Model Classes

Initially, the data scientists were unsure which type of predic-
tive models to build. Although they had used simpler mod-
els in the past, such as decision trees and logistic regression,
they were eager to use random forest models due the promise
of higher accuracy but were worried about how interpretable
the results would be. After building models using both logis-
tic regression and random forests, they were curious to use
partial dependence plots to understand the trade-offs of both
approaches. An example of such trade-offs can be seen in
Figure 6, which is a partial dependence plot of two logis-
tic regression models and one random forest. Interestingly,
for this feature (which refers to the number of times patients
got their BMI recorded), the model types disagree substan-
tially for higher values in the plot. This is surprising since
the inspected feature is most important for all models and all
models perform equally well using standard statistics like ac-
curacy or AUC.

While all three models have a decrease in average predicted
risk when the count goes from 0 to 2, the logistic regression
models continue to trend downward. However, the random
forest model (in red), illustrates the predictive risk increases
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Figure 9. The user interface of Prospector is shown at the top. The bottom left shows suggestions on what changes (white circles) would decrease the
predicted risk the most. The bottom right shows how the color plots change due to changing a value (namely changing the bmi value from 0 to 1). Fully

white circles show the original value of the given patient.

as the count gets higher than two. The data scientists were
surprised to learn how differently the model classes treated
this feature, but using the tool, they were able to devise a
two-fold explanation. On one hand, logistic regression mod-
els are not expressive enough to model the late increase after
the initial drop, as logistic regression models are bound by a
single curve. On the other hand, most of the observed data
points of the feature are zero, one, and two while the higher
values occur extremely rare, as the histogram below the plot
clearly illustrates. This led the data scientist team to question
whether to model everything as precisely as possible or using
a simpler model for the sake of generality.

Unexpected Effects of Data Imputation

Due to limitations of their database, many of the patients were
missing Glucose lab test results. During the feature construc-
tion phase, the team made a decision that in order to work
around the missing values, each patient who did not have a
value would be given the average observed value of all other

patients. This imputation technique is popular among predic-
tive modelers, as simply removing all patients without such
data would make the data quite small. However, once the
data science team began to explore the Glucose feature in the
tool, as shown in Figure 3, they began to realize the dramatic
effects their imputation strategy can have. Due to the im-
putation, patients that are either cases or controls often have
the same lab test values which increases the noise of the pre-
dicted risk. The partial dependence plot illustrates that, as
noise increases, the predicted probability gets closer to the
population average leading to a valley in the machine learn-
ing model. Exploring this feature in Prospector suggested
that a better strategy for handling missing values would be
needed to overcome this problem.

The Need for Localized Inspection

Discussions in bi-weekly interviews also led to the develop-
ment of the localized inspection of patients which aims to
answer the following questions:



1. What impact does a feature have on an actual patient?

2. Does the model behave correctly on a case-to-case basis?
3. What are the most important features for a given patient?
4. Why are certain patients not being accurately predicted?

5. Can we identify high impact actionable features?

The last question about identifying actionable features was of
particular importance to the data science team. They were in-
terested to know if the model could be used to learn features
that could be acted upon by the patients or their doctors to
reduce the risk of diabetes. However, the data science team
were disappointed to learn, via Prospector, that many of the
highest ranking features were not actionable. For instance,
some of the most predictive features for a high risk of dia-
betes involved having a high count of the number of lab tests.
Informing patients to get fewer lab tests would likely not cor-
relate to lower risk of diabetes. Instead, these lab test counts
were likely a proxy for other features that correlated to more
complicated or more sickly patients seeing their doctors more
regularly and thus getting more lab tests. Other demographic
features that were highly predictive, like age, simply have no
intervention as well. The data science team then reconsid-
ered which features should be a part of the predictive model,
by creating features that are actionable and omitting others.
Of course, the model cannot know this by itself — no matter
what sophisticated feature selection algorithms are used — so
the access Prospector provides is critical for this process.

Impact into Data Scientists’ Workflow

In addition to learning new insights about their predictive
models, the tool also impacted the team’s workflow. Prior
to Prospector, after each new predictive model was built, a
data scientist would manually generate a set of reports de-
scribing the model. Typically, this would involve exporting a
list of the model’s top features and their weights, and gen-
erating a bar chart for the other team members to review.
They would present these bar chart summaries during review
meetings and discuss if the model seemed sensible enough.
If they believe the list of features made sense, they would
then present this chart to their stakeholders. If it didn’t, they
would brainstorm how to improve the predictive model (such
as changing the classification or feature selection algorithms)
and then repeat this process. While this manual approach led
to the deployment of predictive models in the past, many it-
erations were required and understanding impactful values of
features were rarely considered.

Once Prospector was integrated into their workflow, many of
these shortcomings were overcome. No longer did a data sci-
entist need to generate a set of manual reports. Instead, the
predictive model can be loaded into the tool directly. Since
the tool is interactive, it also allows the team to ask ques-
tions that may have not been considered when static charts
were created. The tool also allowed them to ask questions
beyond the top features that contributed to the models. They
could ask more patient-centric questions such as “Why is this
patient not being classified correctly?” by drilling down to

incorrectly predicted patients and exploring the most impact-
ful features for them. Beyond exploration, Prospector was
also used to communicate models to the stakeholders, which
allowed stakeholders to ask questions and see the results in
real-time. This rapid feedback helped gain support for de-
ploying predictive models in future projects. As a result of
these successes, Prospector is now a part of their predictive
modeling workflow and is used for other work than predicting
the onset of diabetes.

CONCLUSION AND DISCUSSION

In this paper, we demonstrated how the design and imple-
mentation of an interactive visual analytics system, Prospec-
tor, can help data scientists assess the interpretability and ac-
tionable insights of trained predictive models. Prospector ac-
complishes this by supporting interactive partial dependence
diagnostics for understanding how features affect the predic-
tion overall by featuring novel visual representations, sam-
pling strategies, and support for comparing multiple mod-
els. Furthermore, Prospector supports localized inspection
so data scientists can understand how and why specific data-
points are predicted as they are. With support to interactively
tweak feature values and see how the prediction responds, as
well as finding the most impactful features using a novel lo-
cal feature importance metric, data scientists can interact with
models on a deeper level than possible with common tools.
Finally, we presented a case study, in the spirit of #chidgood,
which involved a team of data scientists using Prospector to
improve predictive models for detecting the onset of diabetes.
Their extended use of the tool led to better predictive mod-
els, as well as better communication of their models to their
stakeholders.

Despite the novel features of Prospector and its successful
case study, there is still much future work to continue to give
users full comprehension of predictive models. Prospector
relies on partial dependence for one input feature at a time,
but this approach relies on the orthogonality of input features.
However, in real-world data, this is not often the case, as fea-
tures may be correlated. Prospector can only model changes
along one axis at a time as it cannot take correlations or in-
fluences between features into account. We plan to address
this limitation in future work by modeling valid sets of in-
put points and visualizing how they react to changes in one
or more features. Another limitation is that Prospector was
built to view predictive models after they had been built us-
ing users’ own predictive modeling pipeline of choice. How-
ever, this flexibility limits the ability for users to directly im-
pact their predictive models based on insights reached during
exploration. Also, Prospector can only handle single-class
predictions, but we plan to extend this functionality to multi-
class predictions in the future. Our future work also intends to
integrate Prospector more directly into the predictive model-
ing pipeline so users can directly modify features for feature
construction and feature selection and see how their models
improve in a single user interface. Despite these limitations,
providing users with advanced visual tools to inspect black-
boxes of machine learning shows great promise and helps
users comprehend and retain control of their predictive mod-
els without sacrificing accuracy.
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