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Abstract

In evolving graphs a great amount of changes can occur, which is difficult to follow
at once. Nodes may appear or vanish and edges change connections between them,
merging or separating parts. Besides the current practice of animating between
time steps, annotations in the graph can be used to help the reader to better
understand these changes. In this thesis, static visual representations of graph
changes are presented. At first, a case study was conducted to find a common sense
in manual graph annotations. Automatic graph annotation methods are developed
to detect and highlight node movements, intra-cluster connectivity changes, and
vanishing edges between clusters. An overview of visual annotation metaphors is
given. Finally, examplary annotated graphs are shown in different styles, serving
individual presentational demands.
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1. Introduction

Analyzing and visualizing evolving graph structures underlies rising interest in a
very broad range of scientific domains, like social sciences, natural sciences, or visual
analytics. Tracking complex changes between evolving steps is still difficult due to
limitations of human perception. In this thesis I describe methods to cope with the
described problem by static annotation of node link diagrams as one representation
of evolving graphs.

Graphs can be represented as adjacency matrices or as node link diagrams. For
observing time-step-wise changes in evolving graphs, adjacency matrices can be
compared. Visualizations can aim to highlight the changes explicitly, either by a
difference matrix, or row and column reordering. But, for comparison on different
levels of detail, they do not scale properly.

Node link diagrams (hereafter implied by the term: graph representation) are more
intuitive. When arranged by a sufficient layout algorithm, the node positions and
linked edges allow fast perception (the features ”position” and ”direction”, according
to Cleveland & McGill [5]) and Gestalt laws can be utilized for visualizations, e. g.
giving closeness of nodes a meaning.

	
Figure 1.1: A graph, evolving over time.
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The connection between graph representations at successive time steps is not easy to
conceive, as demonstrated in Figure 1.1. Therefore visual aids are needed to allow fast
tracking and quick overviews of the changes that led to the differing representations.

A common aid is the animation of changes between two consecutive time steps.
However, the amount of changes also makes it difficult to perceive the animation,
since it is difficult to follow movements of too many distinct items [14]. In my work I
will focus on static annotations predicting changes to the next time step, in a graph
with a data driven layout. Such layouts are assumed to only show logical updates,
i. e. no intermediate layouts are allowed, taking only some of the changes between
two time steps into account [4].

1.1 Types of changes

Changes in graphs can be divided into two types: Node and edge changes. In these
two categories several finer types can be distinguished. Node changes can be nodes
appearing or disappearing, and nodes moving from one time step to the next. The
movement of nodes can be seen as an indirect change, since it depends on the layout
of the graph. In the given graph layout, where the visual distance between two nodes
optimally reflects the distance in the graph (i. e. shortest path), the movement of the
nodes is produced by changes of the edges. The graph layout is further discussed in
Chapter 2.1.

Changes of edges in a graph are just the creation or removal of them. But regarding
the importance of an edge change, there are two types of those changes: Inter- and
intra-cluster. Inter-cluster changes either strengthen the connection between two
clusters up to merging them, or weaken the connection up to completely separating
the two clusters. This often leads to a movement of the entire cluster. Intra-cluster
changes only have influence on the connectivity within the cluster.

1.2 Granularity

Annotations can vary in their granularity. Showing all changes by themself, e. g. ,
marking every vanishing and creating edge, and displaying the movements of every
individual node, is a very granular and exact annotation. It does not enhance the
readability of the graph, though, nor does it provide any context for global changes.

Simplifying all changes leads to schematic annotations. For example showing the
overall connectivity change of the graph gives the overall context of the individual
edge changes and simplifies them to one statistical feature. A drawback is the loss of
precision, though.

The optimal annotation would be a trade-off of granularity, providing the greatest
expressiveness, i. e. visualizing schematic annotations with sufficient exactness.
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⇔

Figure 1.2: The trade-off between detailed (left) and schematic (right) annotations.
On the left, vanishing edges are drawn in red and the absolute movement of the
nodes is annotated in blue. On the right, just the tendency of the connectivity in
the whole graph is shown, indicated by an arrow.

In this thesis the main focus lies on showing intra-cluster connectivity changes, cluster
movement, and inter-cluster edge removal. This gives a good granularity trade-off.
By ignoring individual edge changes in clusters and showing a summary of them as
connectivity change, the concept of the edge changes in a cluster is displayed and
individual edge changes do not distract the reader. The cluster movements show the
tendency of clusters to merge or disconnect. The annotation of inter-cluster edge
removal can illustrate the motifs of this movements. By visually cutting more than
one disappearing edge, the context of the removal for the disconnection of clusters
can be seen.

1.3 Related Work

Current graph drawing techniques for dynamic graphs focus solely on optimizing
layouts for successive graphs. The main goal is to create a consistent, stable, and
readable dynamic graph layout [4]. In order to achieve this, layouts try to preserve
the mental map of the reader inbetween time steps [8]. Reducing node movements
leads to this preservation [12]. However, preserving the mental map can lead to false
assumptions about the graph [13] in some cases, or a poor layout performance in later
time steps [15]. Saffrey & Purchase [15] suggest a compromise between mental map
preservation and good layouts, which is for example provided by Brandes et al. [3].

To show the changes of dynamic graphs, animation is used [4][3][2][8]. However,
animations can be challenging to analyze. Often, multiple replays are needed to find
parts worth focussing [14]. Too many, or asynchronously moving data points can be
confusing [14]. Baudisch et al. [1] remark that static depictions of motion perform at
least as well as animation, while helping to process changes better.



2. Preliminary Work

In this chapter, the projection algorithm for the graphs in this thesis is described.
The results of a case study, aiming to find a common sense, are discussed. Also some
straight forward annotations are investigated.

2.1 Projection Algorithm

Before annotating a graph, a good node placement has to be found. The quality of
the annotations is directly influenced by the layout. Therefore, the layout algorithm
should reflect changes in data adequately. Otherwise the annotations would only
reflect the changes of the layout. For example, a big movement caused by only a
single edge change in a highly redundant graph area leads to wrong assumptions
about the changes in the graph, whereby annotations of this movement would become
futile.

The graph layout used in this thesis is a stress minimizing layout with anchoring [3].
Stress is defined by the difference between visual distance and distance in the graph,
i. e. the length of the shortest path between nodes. In order to get an anchored
layout, the following adjusted stress function is used:

stressAα (P (t)) = (1− α) · stress(P (t))︸ ︷︷ ︸
quality

+α ·
∑
i∈V

φ
(t)
i ‖p

(t)
i − pi‖2︸ ︷︷ ︸

stability

where P = (pi)i∈V is a reference layout, retrieved for example by the previous time

step or the average graph layout. φ
(t)
i is used to fix a node to the reference point

differently strong. The ratio between stress minimization and anchoring is given by
α.

Minimizing the stress function leads to consistent, stable, and readable layouts
[4]. This compromises between mental map preservation and a good layout (see
Chapter 1.3).
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2.2 Case Study

In order to find a general consent in manual graph annotations, four graph drawing
experts and four non-professionals were asked to annotate an evolving graph manually.

The participants were asked to manually annotate the given evolving graph. No
restrictions, what or where to annotate, were made. The example graphs were chosen
from real life evolving graphs and synthetic graphs showing clear common patterns
like splitting clusters.

2.2.1 Results

The main observation of the case study was that there are only few common senses
in annotating layouted graphs. Surrounding groups of nodes is common. Although,
the outlines serve different purposes. Another recurring technique is to use arrows
for depicting motion of nodes.

The manual annotations can also be analyzed in terms of granularity (see Figure 2.1
and its explanation).

Detailed Abstract

(a)

(b)

(c)

(d)

(e)

(g)

(f)

Figure 2.1: Example results of the case study. The position on the x axis determines
the granularity as described in Chapter 1.2.

The following table explains the results, shown in Figure 2.1, in more detail.
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Description Granularity Discussion
(a) Showing every node move-

ment by its own.
Very granular and exact. Only node movements are

taken into account. Due
to high grade of detail,
similarities in the move-
ments are not hinted.

(b) Combining edge creation
and node movement.

Very granular and exact. The difference between
movement and edge cre-
ation is not intuitive. It
is not feasible for larger
graphs.

(c) Noteable node move-
ments and edge creation
depicted as differently
colored arrows. General
movements of areas
shown with larger arrows.
Disappearing edges
striked out.

In case of the individ-
ual nodes, the annota-
tions are exact. The
large arrows are not as
exact since they combine
the movement of several
nodes. Overall it is less
granular.

The use of the same
metaphor (arrows) for
different purposes can
lead to confusion. Edge
changes are not set into
context.

(d) Using a trail along nearby
nodes to show the change
of it from one step to the
other.

Node movements are com-
bined. The individual
movement of each node
can only be assumed.

The usefulness is re-
stricted due to the diffi-
culty to find good trails.
Edge changes are not
taken into account.

(e) Similarly moving nodes
are summarized. Nodes
that will be connected are
circled together. Arrows
provide the moving di-
rection and a ”+” distin-
guishes edge creating cir-
cles from others.

The changes are largely
summarized.

The arrows give a hint of
the movement and newly
created edges are put into
context.

(f) Enlarging the area
around nodes to their
new position. Grouping
of similar moving nodes.
Showing new connections
between the clusters.

Movements are summa-
rized and edge creations
are hinted.

Movements are relatively
exact, even though they
are summarized. In com-
bination with the indi-
vidual movements of the
nodes (red lines), which
were not part of the man-
ual annotation, level of
detail is provided.

(g) Enlarging the area
around nodes to their
new position. Grouping
of similar moving nodes.

Movements are summa-
rized.

Similar to (f). How-
ever, no hints about edge
changes are given.
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2.3 Straight forward approaches

In the following, straight forward annotation techniques are discussed, in order to
show the need for more advanced approaches.

2.3.1 Node movement

A basic form of annotating node movements is to connect start and end points of
cluster members with arrows. This adds one additional observable entity per node.
The resulting visualization is heavily cluttered.

Figure 2.2: A straight forward movement annotation. Movements of the nodes are
represented as lines. The end point of a line is the next position of the respective
node.

2.3.2 Node metaphors

In an evolving graph not only the edges change but also nodes may appear or vanish.

Normally graph annotations should only predict the future of the graph, but in the
case of nodes it is helpfully to also show what happened before, i. e. that new nodes,
in this time step can be identified, or that a node existed at a spot in the previous
step but does not exist anymore.

An idea to show possible metaphors for edge creation and removal is depicted in
Figure 2.3.

(a) Node creation (b) Node deletion

Figure 2.3: Metaphors for emerging and vanishing nodes. The left side of each
picture shows what will be happening in the next time step, the right side refers to
the previous one.
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2.3.3 Disappearing edges

In order to annotate disappearing edges in a simple way, those edges can be marked
as vanishing. Using colors or striking them through is an intuitive method. This
leads to not relateable edges in crowded areas. In not well connected areas the
context of the disappearing edge is lacking. For example, it is hard to see relations
between vanishing edges, as they occur when clusters are disconnecting.

Figure 2.4: Disappearing edges in the graph are colored in red. All other edges are
not altered.

2.3.4 Emerging edges

One way to show emerging edges would be to draw the upcoming edges and mark
them to be easily identified as new. This would predict the next time step of the
graph very well, due to the fine granularity. However, it does not show how emerging
edges are related. Another problem is that the position of the nodes are not yet
adjusted to the new connectivity situation, therefore leading to long edges across the
whole graph. These long edges introduce additional clutter.

Figure 2.5: In addition to the current edges, emerging edges are drawn in green. The
new edges are not yet present in the graph, but will be in the next time step.



3. Node changes

In order to simplify node based annotations, parts of an evolving graph can be
clustered. There are different relationships between nodes, that lead to different
clusters.

3.1 Clustering based on projected positions

As data driven layouts introduce movements of nodes, one relationship between nodes
is the similarity of that movement. In the graph layout, nearby nodes are likely to
be strongly connected. On the other hand, weak connectivity does not imply long
distances between nodes. Edge changes alter the connectivity of nodes, which leads
to their movement. Neighboring nodes are likely to move in a similar direction when
edge changes do not influence their connectivity.

Clustering similarly moving neighbors therefore allows annotation of global trends
within a graph. Since the node movement is influenced by the edges, the movement
of such clusters define the interaction between them.

3.1.1 Generating continuous movements

The movement of nodes is described by the direction and the length of the movement,
and the position of the node. A good similarity measure should account for all of
those three components. Encoding the position of a node in the similarity measure is
a problem, since it has to be weighted against the actual movement of the node. In
order to circumvent this problem, a continuous representation of the node movements
over the complete plane of positions can be used. The continuity can be achieved by
interpolating between the movement vectors of the nodes.

An effective method to interpolate between movement vectors is the use of kernel
functions. This can be done by summing up all movement vectors of all nodes,
weighted by the distance to the nodes at this point. The weighting function can be
chosen freely. A linear function would result in a rough field, but the nodes have
limited influence within a certain radius. A better kernel function is a Gaussian curve
which results in a very smooth field. The influences of the nodes are also limited,
because the exponential function gets near 0 after a certain distance.
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Figure 3.1: The vector field of node movements, interpolated with a kernel function.

The resulting vector field does not depend on the visual ordering of the nodes nor
the distance from nodes to each other. Outliers and nodes with small movements
may be occluded by surrounding nodes with larger movements.

3.1.2 Clustering the vector field

Having a continuous vector field, the distance measure of the clustering can con-
centrate solely on the moving direction and length. Telea et al. [16] have a good
approach, using an elliptic similarity function.

Figure 3.2: The ellipsoid based vector measure. The coordinates are rotated, such
that vector v points to the right. Lying on the same ellipsoid, w1 and w2 have the
same distance to v. w3 however has a larger distance.

To keep the possibility of changing the granularity of an annotation, hierarchical
clustering [11] is used to cluster the vector field. Attempting this goal directly
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along the edges of a graph can lead to heavily distributed clusters since an edge
does not necessarily mean a visual closeness in the layouted graph. To avoid a
direct weighting of the distances between nodes, the previously generated continuous
movement field can be used and separated in a grid-like manner which is then merged
by a hierarchical clustering [16].

(c) Initial configuration (d) After 10 steps (e) After 140 steps

Figure 3.3: The hierarchical clustering after a certain number of merge steps per
cluster.

Figure 3.4: The final clustering based on interpolated node movements. Bubble Sets
are used to render the outlines of the clusters.
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3.2 Clustering based on the graph structure

For non-evolving graphs many clustering methods based on the graph structure are
known. In the case of dynamic graphs, one method to cluster a graph is to aggregate
the graphs and then cluster it. This represents the overall connectivity between
both time steps most accurate. However, since the layout positions of the graph are
computed according to the first time step, the cluster have little spatial proximity.
This leads to a cluttered representation.

Another method is to cluster the first graph only. The changes to the next time step
can be shown with other annotations (see Chapter 4.1).

In this thesis I use the Markov Clustering algorithm [17]. Though, other feasible
clustering algorithms would work as well. The Markov Clustering algorithm uses a
deterministic way to compute the probabilities of random walks in the graph. These
random walks are then used to find clusters, using the property that the number of
longer paths between two arbitrary nodes of a natural cluster is high [7]. The result
of the clustering is shown in Figure 3.5. This clusters are much more distinct than
the movement based clusters Figure 3.4.

Figure 3.5: A clustering generated by the Markov Clustering algorithm. Bubble Sets
are used to render the outlines of the clusters.
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3.3 Visual representation of clusters

Having defined clusters, it is necessary to visualize the membership of nodes. One
method would be to assign each group a color and mark every node with the color
defined by its group. The coloring can reduce the set of visual features to encode
other informations in a graph. One way to avoid this is to surround the members of
a cluster by an outline.

3.3.1 Outline creation

The outline of cluster members can be the convex hull. Alternatively, Bubble Sets
[6] produce concave outlines of cluster membership.

Convex Hull

To generate a convex hull, the Graham’s Scan algorithm [9] can be used.

Bubble Sets

Bubble Sets [6] are an implicit boundary of visual items, i. e. represented as rectangles
or lines. They are computed by generating a potential field around those items
and connecting distant parts with delaunay based lines. A great advantage is the
possibility of avoiding items that are not part of a cluster, up to bending lines between
items.

Comparison of convex hull and Bubble Sets

A convex hull can be fast to compute, but since nodes may be distributed, or clusters
can be interleaving, the convex hull produces overlaps which make it difficult to read
them properly (see Figure 3.6). Bubble Set outlines try to avoid each other, thus
minimizing overlaps. This makes it easier to distinguish clusters. However, overlaps
are still possible (see Figure 3.4).

Figure 3.6: Multiple convex hulls overlapping, making it difficult to distinguish
them. The colors of the areas are chosen randomly to ease the discriminability of
the clusters.
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3.3.2 Cluster movement

Having a visual representation of clustered nodes, informations about their movement
would be a helpful addition. The following table explains some techniques to show
the movement of clusters.

Type Description Benefits & disadvantages
Color coding The direction of the movement cor-

relates with colors on the color cir-
cle. The length of the movement
is coded with the saturation of the
color.

Since the color direction mapping
is not very intuitive, a color key
is needed. Additionally the satu-
ration acts only as a relative mea-
surement. However this technique
can be used as an addition to other
methods of movement annotation,
when the color of a cluster area is
free to choose.

Larger Areas Extending the area of cluster out-
lines to end positions of the node
movements.

This method does not rely on av-
erage movements and is therefore
exact, with respect to new node
positions. Yet, the exact new po-
sition of an individual node can
not be determined. Due to the ex-
pansion of the cluster area, clutter
can be introduced from overlap-
ping cluster regions.

Arrows Showing the movement with ar-
rows.

There are many possibilities to
draw arrows showing the move-
ment. The start position of the ar-
row could be chosen at the border
of the outline or the center of the
area. The length is also not quite
definite. The mean movement of
all nodes can be chosen, or the tip
of the arrow can for example be at
the same relative position as the
start but on the final destination
of the outline. Therefore the ar-
row does not represent the exact
movement, but the direction and
a hint of how long the movement
is.

Motion lines Motion lines are a common
metaphor for movement in comics.
They are drawn behind the mov-
ing object.

Motion lines are well established
in comics to give a hint of the di-
rection. However, the length of a
movement is not addressed very
well. Since the lines are in the
opposite direction, the end of the
line can not hint the new position
of a moving area.
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Arrows
(no outline)

Without drawing the outline, ar-
rows can be placed directly at the
center of the area.

Missing the outlines, the picture
gets less crowded. On the other
hand it gets less clear which nodes
are contained. Due to this, the ar-
rows cannot exceed the area of the
nodes without risking to include
other nodes that are not part of it.
Therefore an arrow, pointing di-
rectly to the new position, is gen-
erally not possible. However, a
hint of length and direction can
be made.



4. Edge changes

Graphs have changes of node connections, i. e. changes of edges. Having defined
clusters, two types of edge changes are introduced: Intra- and inter-cluster changes.
Individual intra cluster edge changes are less important than the overall change of
connectivity in the cluster. For inter cluster edge changes, it is of interest to know
where edges between clusters are created and which edges are vanishing.

4.1 Showing connectivity changes in clusters

In areas of a graph with a high connectivity, showing individual emerging and
vanishing edges can become very cluttered. Since these regions are already well
connected the creation or the removal of a few edges has only little influence in
the connection of parts and serves more for the inner connectivity of such a cluster.
Therefore, the display of particular changes can be replaced by an estimation of the
overall connectivity change.

4.1.1 Computing the connectivity change

In order to determine the change of connectivity in a cluster, the edge density of the
cluster in both time steps can be computed. The difference between those values
then is a measure for the change in the overall connectivity of the cluster.

The edge density of a cluster dc in the directed graph G = (V,E), where Vc ⊆ V is
the set of nodes in the cluster and Ec = E ∩ (Vc × Vc) the set of edges within the
cluster, is computed as follows:

dc =
|Ec|

|Vc|(|Vc| − 1)

where dc is the ratio of edges, to the number of edges of a fully connected cluster of
the same magnitude.

However, this measurement does only account for the number of edges in the
cluster and ignores that edges can be differently important within a cluster, e. g.
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separating the cluster by removing an edge. In order to reflect such behaviours, other
measurements have to be used.

Clusters are not fully connected in the most cases. Using the mentioned measurement,
this can result in small values, making it difficult to represent them. A logarithmic
scale can be used to avoid this.

4.1.2 Visual representation of connectivity changes

To present the connectivity changes as annotations, different approaches were used.

Type Description Benefits & disadvantages
Color coding Showing connectivity changes as

cluster outline colors. Blue rep-
resenting increasing connectivity
and red representing the decrease
of it. The intensity can be coded
as the saturation of the color.

Choosing arbitrary colors, a key
is needed. Additionally the satu-
ration acts only as a relative mea-
surement. However this technique
can be used as addition to other
methods of movement annotation,
when the color of a cluster area is
free to choose.

Arrows Using upward and downward ar-
rows, depicting increase or de-
crease of connectivity. The effect
can be emphasized with colors.

Coding the strength of change into
the size of the arrow is not easy to
read. The shown changes are only
relative.

Trapezoid A trapezoid can show the absolute
connectivity change of a cluster.
The length of the left line projects
the connectivity at the first time
step and the length of the right
line projects the connectivity at
the second time step. Again, col-
ors can be used to emphasize the
changes.

Assuming a left-to-right text direc-
tion, the metaphor is intuitively
graspable. However, the width
of the trapezoid can change the
steepness of the lines and there-
fore the preattentive anticipation
of connectivity changes.

4.2 Summarization of disappearing edges

The change of inter-cluster edges can be very informative regarding groups of edges.
For example, disappearing edges can lead to separation of clusters. Seeing this change
without its context can be misleading, since one vanishing edge may just slightly
affect the connection of those clusters. However, the contexts of edge changes are
difficult to find visually, when they are not hinted to the reader. Therefore a good
way of showing these relations is to connect relating edges by striking them out
together.

Appearing edges also have these relations. Although, the näıve display of them leads
to a cluttered drawing, since the nodes are in a position that is not yet affected by
the new edges. A possible way of showing the appearance would be to investigate the
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evolution of the graph in reverse order and examine the disappearance. Therefore,
this chapter focuses on disappearing inter-cluster edges, by finding suitable strike
out curves.

There are many ways to generate edge strike out curves. Unfortunately, the under-
standing, what a good strike out curve is, diverges. Having a profound algorithm
does not necessary mean getting a visually effective result.

4.2.1 Heuristical edge strike out curves

Edge strike out curves can be generated using heuristical methods.

Algorithm and visual representation

The algorithm to generate such curves is split into phases. In each phase, one curve
is generated. A phase starts by taking points on the edges to combine them to curves
(the number of points per edge is later called edge resolution). Out of this set of
curves, the best curve, according to the heuristic, is taken. The edges cut by this
curve are removed from the set of edges and the next phase starts, when this set is
not empty. A pseudo code representation of this method is described by algorithm 1.

Algorithm 1: A general way of computing heuristical strike out curves. Evanishing

is the set of vanishing edges and Eother is the set of the other edges present at the
current time step. A tuple (Edge e, Numbern) describes the nth point on the edge
e. The maximum of n is the edge resolution r. This algorithm uses the function
nextCurve, which is described in algorithm 2.

C ← ∅
while Evanishing 6= ∅ do
c← null
t← null
loop
t←nextCurve(t, Evanishing)
if t = null then

break
end if
if t intersects any curve ∈ C then

continue
end if
if t intersects any edge ∈ Eother then

continue
end if
if c = null ∨ heuristic(t) > heuristic(c) then
c← t

end if
end loop
if c 6= null then

remove all edges ∈ c from Evanishing

add c to C
end if

end while
return C
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Algorithm 2 shows how to generate all possible curves, by defining an implicit
ordering of the curves. For a curve, the algorithm computes the next one. It works by
successively extending the curve, until she reaches its maximum length. When this
happens, the points on the last edge are iterated. After that the next edge is taken
at the rearmost position of the curve, shortening it when no next edge is available.

Algorithm 2: This algorithm describes the function nextCurve, used in algorithm
1. The function takes the current curve c, which may be null, and the remaining set
of vanishing edges Evanishing, which has to have a fixed ordering. A curve is a list of
tuples (Edge e, Numbern). Each edge is segmented in equidistant points. The tuple
describes the nth of this points for edge e. n is limited by the edge resolution r.

if c = null then
return [(firstEdge(Evanishing), 0)]

end if
if ∃e ∈ Evanishing : e 6∈ c then

return e appended to c
end if
while length(c) > 0 do
n← number of last point in c
n← n+ 1
if n < r then

return c with the new n as number of the last point
end if
e← last edge in c
if ∃t ∈ Evanishing coming after e then

return c with the last tuple replace by (t, 0)
end if
remove the last element of c

end while
return null

Having to test all possible curves, this algorithm has a bad performance. However,
taking just a small number of equidistant points on each edge, can give fairly good
results in an acceptable amount of time.

Because of the generation of the curves, they can be directly drawn. Although, the
segments between two edges are a priori straight lines. This leads to angular curves.
B-splines provide a smoother way to draw the curves.

Only straight lines

Defining the quality of a curve as a straight line, cutting the most edges, performs
very well on even cluster surfaces. But on interlaced surfaces, the lines become
very cluttered. However, due to the limitation to two control points, the algorithm
computing the lines can be simplified to two nested iterations over the edges. An
example of this heuristic is shown in Figure 4.1.

Angle sum

Another heuristic is to account for the total length of a curve and prefer curves with
less bend.
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Figure 4.1: A strike out line heuristic, focussing on long straight lines. The edge
resolution is 8. Disappearing edges are colored red and strike out lines crossing only
one edge are drawn as crosses.

The bend can be defined in different ways. One way would be to take the sum
of angles at each control point of the curve. Additionaly this serves as length
measurement, too, since only more control points can generate higher sums. The
maximum angle sum of a curve is π · n, where n is the number of control points.
Such a curve would be a straight line. However, a curve with only one control point
has to have a fixed value. This can lead to the preference of curves cutting one edge
over curves cutting two edges. Figure 4.2 shows an example of this heuristic.

Total length and angle deviation

Another way to measure the bend is to take the standard deviation of the angle of
the curve segments. Care has to be taken, since the standard deviation can not be
computed with the angles directly, due to the fact that the angle 2π is the same as
0. This would give wrong results, if the segments are near to those values. In order
to get the correct results, the standard deviation σ has to be computed element by
element.

σ2 =
1

n

n∑
i=0

angleDifference(segmenti,mean segment)2

The mean segment is the sum of all normalized segments. The function angleDifference
takes two vectors and computes a safe angle difference out of their directions.

In order to guarantee long lines, the length of curves has to be compared, too. By
binnig subsets of possible angles, the length of curves only needs to be computed if
the bend of the curve is in the same bin. In Figure 4.3 an example of this heuristic
is shown.
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Figure 4.2: A heuristic, favoring curves with many control points and low bend by
summing up the angles of the lines at the control points. The edge resolution is 4.
Disappearing edges are colored red and strike out lines crossing only one edge are
drawn as crosses.

4.2.2 Clustered edge strike out curves

A non-heuristic, analytical way to generate strike out curves is to cluster edges in an
appropiate space. This method is not integrative, therefore the task has to be split
into cluster generation and representation.

Edge cluster generation

Edges can be described by four dimensional vectors. The meaning of each dimension
should be chosen thoroughly. For example, clustering the edges by their start and
end positions can be incorrect. Constellations occur, where for example, the start
position is nearer to another end position than the respective other start position.
The proximity of the two nodes is not encoded correctly, due to the positions coded
in different dimensions. This would lead to wrong clustering results.

In order to solve this proximity problem, the Hausdorff-distance [10] can be used
to encode the distance between lines. In the case of two lines (L1 and L2), the
Hausdorff-distance is

δH = max{sup
x∈L1

inf
y∈L2

d(x, y), sup
x∈L2

inf
y∈L1

d(x, y)}

for a metric d, sup being the supremum, and inf being the infimum. Figure 4.4 shows
the results of a clustering based on the Hausdorff distance between edges.

Another choice of features can be the use of one point on the edge (e. g. the midpoint)
and the difference of the start and end point, i. e. the direction of the edge. The
results of a clustering based on these features are shown in Figure 4.5.
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Figure 4.3: Strike out curves generated chosen with as few bend as possible. The
bend is computed by calculating the standard deviation of the angle difference of
successive curve segments. The edge resolution is 4. Disappearing edges are colored
red and strike out lines crossing only one edge are drawn as crosses.

Edge cluster representation

Since elements of a cluster have no inner ordering, a way to draw a single curve
through the elements is needed. This is a rather complex task. For the previous
shown pictures, the Bubble Sets from Chapter 3.3.1 were used.

Problems with clustering

The clustering of disappearing edges yields some problems.

For example, avoiding edges that must not be clustered, can not be directly integrated
in the clustering algorithm. Therefore the generated areas do also strike out some
persistent edges (see Figure 4.5 and Figure 4.4). Using line-line visibility, avoiding
persistent edges can be encoded in the clustering.

Another problem is, that clusters tend to be compact and circular, which is desireable
in the most cases. But this is not desireable on edge clustering, where long, straight
clusters are favoured.
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Figure 4.4: Disappearing edges clustered based on the Hausdorff distance. The
distance matrix of the Hausdorff distances between the edges was clustered with a
hierarchical algorithm. Disappearing edges are drawn in red, and some segments
crossing non-disappearing edges are circled in blue.

Figure 4.5: Disappearing edges clustered based on the midpoint of the line and its
orientation. Those four dimensional vectors were clustered with an xmeans algorithm.
Disappearing edges are drawn in red, and some segments crossing non-disappearing
edges are circled in blue.



5. Style Variations

Annotations can be drawn in different designs to serve different purposes.

A scribble annotation style could be used to assure that the annotations can be
distinguished from the rest of the visual representation of the graph. Also, it reminds
the reader of the annotations that they are merely a hint of the changes of the graph
and not an exact representation of all changes in it.

For technical applications of graph annotations, a style which blends in with the rest
of the visual representation of the graph is the better choice.
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Figure 5.1: Showing annotations for a graph with a sketchy look.
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Figure 5.2: Showing annotations for a graph with a technical look.



6. Discussion & Future Work

Changes in evolving graphs can be annotated in different ways. In this thesis, some
possibilites are given. However, there is nothing that can be called the optimal
annotation for all scenarios.

Having a set of different annotations per type gives the possibility to adjust them for
varying presentational needs or subjective preferences. Properly used, annotations
are a good addition to conventional dynamic graph drawing techniques.

One advantage of annotations is that they can be combined to increase the richness
of the information. This has to be done carefully, though, to not generate new clutter.
A possible way to set the granularity of an annotation and tune for the optimal
ratio of exactness and expressiveness, would be to vary the number of annotations
used at once, and, regarding clustering algorithms, choosing a different number of
clusters. Also different annotation types for different parts in a graph are thinkable.
Providing more templates of annotation styles for a user, can reduce the task of
manually choosing feasible annotations.

Algorithmic improvements are conceivable. A better way to cluster nodes of a graph
has to be found, respecting both time steps but introducing no heavy distribution
of cluster members and overlaps. Within a cluster, a better measurement for the
connectivity change is needed, which encodes the importance of a changing edge.
As of inter-cluster edge changes, an appropriate and clusterable representation of
edges is of interest. Also a way to encode avoidance of other edges, presumable a
line-line visibility measure, is required. Another task is to find a way to transform
edge clusters into spline curves.
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[10] Felix Hausdorff. Grundzüge der Mengenlehre. Springer, 1914.

[11] Jr. Hierarchical Grouping to Optimize an Objective Function. Journal of the
American Statistical Association, 58(301):236–244, March 1963.



Bibliography 30

[12] Yi-Yi Lee, Chun-Cheng Lin, and Hsu-Chun Yen. Mental map preserving graph
drawing using simulated annealing. In Proceedings of the 2006 Asia-Pacific
Symposium on Information Visualisation - Volume 60, APVis ’06, pages 179–188,
Darlinghurst, Australia, Australia, 2006. Australian Computer Society, Inc.

[13] Helen C. Purchase and Amanjit Samra. Extremes are better: Investigating
mental map preservation in dynamic graphs. In Gem Stapleton, John Howse,
and John Lee, editors, Diagrams, volume 5223 of Lecture Notes in Computer
Science, pages 60–73. Springer, 2008.

[14] George Robertson, Roland Fernandez, Danyel Fisher, Bongshin Lee, and John
Stasko. Effectiveness of animation in trend visualization. IEEE Transactions on
Visualization and Computer Graphics, 14:1325–1332, November 2008.

[15] Peter Saffrey and Helen Purchase. The ”mental map” versus ”static aesthetic”
compromise in dynamic graphs: a user study. In Proceedings of the ninth
conference on Australasian user interface - Volume 76, AUIC ’08, pages 85–93,
Darlinghurst, Australia, Australia, 2008. Australian Computer Society, Inc.

[16] Alexandru Telea and Jarke J. van Wijk. Simplified representation of vector
fields. 1999.

[17] Stijn Van Dongen. Graph Clustering Via a Discrete Uncoupling Process. SIAM
Journal on Matrix Analysis and Applications, 30(1):121–141, 2008.


	Contents
	1 Introduction
	1.1 Types of changes
	1.2 Granularity
	1.3 Related Work

	2 Preliminary Work
	2.1 Projection Algorithm
	2.2 Case Study
	2.2.1 Results

	2.3 Straight forward approaches
	2.3.1 Node movement
	2.3.2 Node metaphors
	2.3.3 Disappearing edges
	2.3.4 Emerging edges


	3 Node changes
	3.1 Clustering based on projected positions
	3.1.1 Generating continuous movements
	3.1.2 Clustering the vector field

	3.2 Clustering based on the graph structure
	3.3 Visual representation of clusters
	3.3.1 Outline creation
	3.3.2 Cluster movement


	4 Edge changes
	4.1 Showing connectivity changes in clusters
	4.1.1 Computing the connectivity change
	4.1.2 Visual representation of connectivity changes

	4.2 Summarization of disappearing edges
	4.2.1 Heuristical edge strike out curves
	4.2.2 Clustered edge strike out curves


	5 Style Variations
	6 Discussion & Future Work
	Bibliography

